A Physics-Informed Machine Learning Model for Mounting Optimization in Printed Circuit Boards DOI
Jae-Woo Kim, Abdelrahman Farrag, Nieqing Cao

и другие.

Lecture notes in mechanical engineering, Год журнала: 2024, Номер unknown, С. 66 - 74

Опубликована: Янв. 1, 2024

Язык: Английский

A review of machine learning in additive manufacturing: design and process DOI

Kefan Chen,

Peilei Zhang, Hua Yan

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(3-4), С. 1051 - 1087

Опубликована: Окт. 5, 2024

Язык: Английский

Процитировано

4

Deep Learning-Based Applications in Metal Additive Manufacturing Processes: Challenges and Opportunities - A Review DOI Creative Commons
Tuğrul Özel

International Journal of Lightweight Materials and Manufacture, Год журнала: 2025, Номер unknown

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Accelerated Fatigue Strength Prediction via Additive Manufactured Functionally Graded Materials and High-Throughput Plasticity Quantification DOI Creative Commons
C. Bean,

Mathieu Calvat,

Yuheng Nie

и другие.

Materials & Design, Год журнала: 2025, Номер unknown, С. 114115 - 114115

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0

Simulation of multiphase flow with thermochemical reactions: A review of computational fluid dynamics (CFD) theory to AI integration DOI
Dongke Zhang, Tanzila Anjum,

Zhiqiang Chu

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 221, С. 115895 - 115895

Опубликована: Июнь 7, 2025

Язык: Английский

Процитировано

0

Thermal-fluid modeling and physics-informed machine learning for predicting molten pool depth in single-layer multi-track fiber laser cladding DOI
Kaixiong Hu, Yiwei Wang,

Feiyang Li

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(7-8), С. 3591 - 3613

Опубликована: Окт. 30, 2024

Язык: Английский

Процитировано

2

A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing DOI Creative Commons
Meysam Faegh, Suyog Ghungrad,

João Pedro Oliveira

и другие.

Journal of Manufacturing Processes, Год журнала: 2024, Номер 133, С. 524 - 555

Опубликована: Ноя. 30, 2024

Язык: Английский

Процитировано

2

Multi-Laser Scan Assignment and Scheduling Optimization for Large Scale Metal Additive Manufacturing DOI
Yuxin Yang, Lijing Yang,

Abdelrahman Farrag

и другие.

IISE Transactions, Год журнала: 2024, Номер unknown, С. 1 - 16

Опубликована: Авг. 6, 2024

Metal additive manufacturing (AM) has attracted significant attention in various industry sectors for large-scale fabrication. However, the limited fabrication efficiency hindered its practical implementation. In comparison to traditional methods of tuning process parameters, concurrent AM equipped with multiple independently driven lasers is a more promising technique recently developed efficient large metal parts. To maximize while ensuring quality multi-laser processes, an optimization problem proposed this work scanning plan, including scan vector assignment and scheduling. The goal minimize makespan considering factors that may affect parts as constraints. Specifically, constraints associated heat-affected zones (HAZs) user-specified single-laser area are considered. model solved by deep reinforcement learning (DRL), offering flexibility include or exclude considerations different quality/process requirements. Two case studies demonstrate application DRL models sets compare their performance two baseline scheduling terms violation addition, impact laser number on operational improvement computational cost also studied.

Язык: Английский

Процитировано

1

Multi-material fabrication and compressive strength-optimization of reinforced-thermoset structures for mechanical power transmission DOI
Parth Patpatiya, Anshuman Shastri,

Shailly Sharma

и другие.

Progress in Additive Manufacturing, Год журнала: 2024, Номер unknown

Опубликована: Сен. 24, 2024

Язык: Английский

Процитировано

1

Physics-Informed Machine Learning for Industrial Reliability and Safety Engineering: A Review and Perspective DOI

Dac Hieu Nguyen,

Hien Nguyen Thi, Kim Duc Tran

и другие.

Springer series in reliability engineering, Год журнала: 2024, Номер unknown, С. 5 - 23

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1

Thermal deformation prediction for additive manufacturing of thin-walled components based on multi-layer transfer learning DOI Creative Commons

Linxuan WANG,

Jinghua Xu, Shuyou Zhang

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Авг. 5, 2024

Abstract This paper presents a thermal deformation prediction method for additive manufacturing of thin-walled components based on multi-layer transfer learning (MTL). The printability is forwardly designed via multi-objective optimization (MOO) by evaluating scanning length, spot amount and segment amount, accompanied support material. To avoid the burdened time-consuming simulation FEM various geometric characteristics components, feed-forward perceptron was constructed as main structure MTL to rapidly obtain temperature distributions manufactured parts. proposed verified SLM mechanical unshrouded turbine. metallographic diagrams were generated observe fabricating quality verify effectiveness MTL-based method. experiment fabricated piece proves that microstructure cross-section molten pool spindly columnar crystals. morphology size different due process parameters, making width grain about 1µm. especially useful metal 3D printing under uncertainty.

Язык: Английский

Процитировано

0