Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions
Information Fusion,
Год журнала:
2023,
Номер
102, С. 102060 - 102060
Опубликована: Сен. 29, 2023
The
Internet
of
Medical
Things
(IoMT)
has
created
a
wide
range
opportunities
for
knowledge
exchange
in
numerous
industries.
include
patient
empowerment,
healthcare
collaboration,
medical
education
and
training,
remote
monitoring
telemedicine,
customized
treatment
plans,
data
sharing
innovation,
continuous
learning,
supply
chain
management,
public
health
initiatives,
wearable
devices,
quality
improvement
initiatives.
However,
the
adoption
IoMT
faces
challenges
regarding
interoperability,
privacy,
security,
regulatory,
infrastructure
costs.
This
paper
aims
to
address
implications
fusion
IoMT,
as
well
associated
security
their
potential
solutions,
which
are
lacking
literature.
Data
collected
from
devices
direct
impact
on
accuracy
predictions
because
its
quality,
quantity,
relevance.
With
an
99.53%
99.99%,
Epilepsy
seizure
detector-based
Naive
Bayes
(ESDNB)
algorithm
is
found
be
most
effective
detecting
epileptic
seizures
networks.
way
stored
must
also
undergo
major
revolution,
all
phases—collection,
protection,
storage—need
improved.
standardization
architecture
measures
may
improve
detection
threats
compromises.
Methods
detect
malware
cross
platforms
avenue
future
research
that
can
effectively
tackle
heterogeneity
systems.
Cryptography
blockchain
technology
have
shown
promising
ways
increase
IoMT-based
system.
findings
this
review
will
assist
variety
stakeholders
ecosystem.
Язык: Английский
Application of neural networks to predict indoor air temperature in a building with artificial ventilation: impact of early stopping
Cathy Beljorelle Nguimatio Tsague,
Jean Calvin Ndize Seutche,
Leonelle Ndeudji Djeusu
и другие.
International Journal of Information Technology,
Год журнала:
2024,
Номер
unknown
Опубликована: Июль 14, 2024
Язык: Английский
OBF-Psychiatric, a motor activity dataset of patients diagnosed with major depression, schizophrenia, and ADHD
Scientific Data,
Год журнала:
2025,
Номер
12(1)
Опубликована: Янв. 8, 2025
Mental
health
is
vital
to
human
well-being,
and
prevention
strategies
address
mental
illness
have
a
significant
impact
on
the
burden
of
disease
quality
life.
With
recent
developments
in
body-worn
sensors,
it
now
possible
continuously
collect
data
that
can
be
used
gain
insights
into
states.
This
has
potential
optimize
psychiatric
assessment,
thereby
improving
patient
experiences
However,
access
high-quality
medical
for
research
purposes
limited,
especially
regarding
diagnosed
patients.
To
this
extent,
we
present
OBF-Psychiatric
dataset
which
comprises
motor
activity
recordings
patients
with
bipolar
unipolar
major
depression,
schizophrenia,
ADHD
(attention
deficit
hyperactivity
disorder).
The
also
contains
from
clinical
sample
various
mood
anxiety
disorders,
as
well
healthy
control
group,
making
suitable
building
machine
learning
models
other
analytical
tools.
It
162
individuals
totalling
1565
days
worth
mean
9.6
per
individual.
Язык: Английский
Detection of depression by utilizing late fusion of sequential actigraphy features
Elsevier eBooks,
Год журнала:
2025,
Номер
unknown, С. 177 - 196
Опубликована: Янв. 1, 2025
Язык: Английский
Advancing ADHD diagnosis: using machine learning for unveiling ADHD patterns through dimensionality reduction on IoMT actigraphy signals
International Journal of Information Technology,
Год журнала:
2024,
Номер
unknown
Опубликована: Май 7, 2024
Язык: Английский
Cloud Insider Threat Detection using Deep Learning Models
D. Shanmugapriya,
C. J. Dhanya,
S. Asha
и другие.
2022 9th International Conference on Computing for Sustainable Global Development (INDIACom),
Год журнала:
2024,
Номер
unknown, С. 434 - 438
Опубликована: Фев. 28, 2024
Insider
attacks
are
a
major
threat
to
cloud
security
since
they
can
harm
organizational
assets
and
have
overlapping
mechanisms.
Therefore,
insider
detection
in
the
environment
is
necessary
compromise
such
attacks.
Past
research
applied
machine
learning
Deep
Learning
(DL)
techniques
for
recognizing
threats
cloud.
The
self-learning
capabilities
network
layers
of
deep
could
enhance
handle
class
imbalance
problems
detecting
threats.
In
this
paper,
pre-processed
data
obtained
by
applying
various
preprocessing
techniques,
including
integrity,
transformation,
sampling
using
Synthetic-Minority
Over-sampling
Technique
(SMOTE)
deal
with
issue
imbalanced
dataset.
balanced
from
algorithms
classified
DL
algorithms,
Conventional
Neural
networks
(CNN)
Long
Short-Term
Memory
(LSTM)
Threat
Detection.
experimental
result
shows
that
performance
CNN
SMOTE-based
outperforms
LSTM
SMOTE
regarding
accuracy,
f-score,
precision,
recall
Язык: Английский
Machine Learning based Assessment of Mental Stress using Wearable Sensors
2022 9th International Conference on Computing for Sustainable Global Development (INDIACom),
Год журнала:
2024,
Номер
unknown, С. 351 - 355
Опубликована: Фев. 28, 2024
Stress
is
recognized
as
a
strong
factor
linked
to
severe
health
conditions
like
hypertension,
cardiovascular
diseases,
and
diabetes.
With
the
growing
emphasis
on
wearable
monitoring,
numerous
investigations
have
been
conducted
into
feasibility
of
leveraging
diverse
physiological
markers
detect
stress.
This
research
endeavors
conduct
classification
using
data,
drawing
from
readily
accessible
WESAD
(Wearable
Affect
Detection)
dataset.
The
primary
goal
employ
this
dataset
develop
models
capable
predicting
stress
based
indicators.
In
paper,
model
designed
enhance
accuracy
level
detection
through
application
Synthetic
Minority
Oversampling
Technique
(SMOTE).
purpose
SMOTE
rectify
issue
imbalanced
datasets
by
oversampling
minority
class.
To
handle
nature
study
adopted
technique
effectively
balance
groups.
Язык: Английский
Predicting air quality using intelligent techniques
AIP conference proceedings,
Год журнала:
2024,
Номер
3214, С. 020027 - 020027
Опубликована: Янв. 1, 2024
Язык: Английский
Depresyonda Motor Aktivitenin Makine Öğrenmesi ile Değerlendirilmesi
Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi,
Год журнала:
2023,
Номер
unknown
Опубликована: Окт. 18, 2023
Psikiyatrik
hastalıkların
neredeyse
tümünde
olduğu
gibi
depresyonun
da
klinik
olarak
değerlendirilmesi
gözleme
ve
subjektif
hasta
şikâyetlerine
dayanmaktadır.
Psikomotor
retardasyon
(gerileme)
önde
gelen
semptomlarından
biridir
bunun
göstergesi
depresyonlu
hastalarda
fiziksel
aktivite
azalır.
Bu
çalışmada,
depresyonu
olan
olmayan
bireylerin
günlük
verileri
ile
oluşturulmuş
bir
veri
setini
referans
kullanarak,
depresyon
tanısı
için
makine
öğrenimi
temelli
objektif
tanı
destekleyici
yöntem
geliştirmeyi
amaçladık.
Geniş
öznitelik
araştırması
yaptıktan
sonra,
Fisher
Öznitelik
Seçimi
en
iyi
dört
özniteliği
belirledik
Toplu
Torbalı
Ağaç
yöntemini
kullanarak
0,88
doğruluk
çalışmasından
daha
sınıflandırma
sonucu
elde
etmeyi
başardık.
Ayrıca,
çalışma
karşılaştırmak
sınırladığımız
öznitelikten
fazlası
seçildiğinde
doğruluğun
0,90’nın
üzerine
çıktığını
belirledik.
Böylece,
verilerini
geliştirdiğimiz
yöntemle
bireyleri
yüksek
payı
ayırt
çalışma,
verilerinin
depresyonda
araç
kullanılabileceğine
dair
umut
verici
sonuçlar
ortaya
koymuştur.
Elde
ettiğimiz
sonuçlar,
farklı
biyobelirteçlerin
de
birlikte
kullanıldığında,
psikiyatrik
değerlendirmedeki
kriterlerin
eksikliğini
giderebilecek
potansiyele
sahip
olduğunu
göstermektedir.
A Novel Distributed Anomaly Intrusion Detection Model for Drone Swarm Network in Smart Nations
Опубликована: Авг. 18, 2023
In
the
recent
years,
drones
have
been
extensively
used
in
variety
of
fields
and
given
essential
nature
drone
swarm
services,
such
as
network
traffic
monitoring
search
rescue
operations,
it
is
imperative
to
mitigate
security
vulnerabilities
network.
Computational
Intelligence
edge
analytics
has
ability
enhance
predictive
capabilities
by
expediting
conversion
high-level
features
into
actionable
insights
for
remote
triggering
alarms
during
emergency
incidents
without
depending
on
backend
servers.
This
study
represents
a
significant
advancement
development
intrusion
detection
techniques
computing
proposing
distributed
model
networks
based
real-time
data
framework
utilizing
hybrid
deep
LSTM-IG-SVM
architecture.
The
architecture
validated
CIDDS-2017
benchmark
attacks
dataset.
Initial
layers
LSTM
are
employed
extract
sequential
packets.
Information
gain
implemented
top
feature
reduction
accounting
energy
constraint
complexity
drones.
selected
further
train
SVM
detection.
It
concluded
that
proposed
outperforms
baseline
with
more
than
99%
performance
accuracy
problem
false
alarming
also
resolved
using
alarm
rate
observed
be
low
0.1%.
Язык: Английский