The symmetric technique of formant transition generation for use in speech synthesis in Arabic DOI
Lamari Chegrani,

Mhania Guerti,

Bachir Boudraa

и другие.

International Journal of Information Technology, Год журнала: 2024, Номер unknown

Опубликована: Июль 24, 2024

Язык: Английский

ArabAlg: A new Dataset for Arabic Speech Command Recognition for Machine Learning Applications DOI Creative Commons
Nourredine Oukas,

Samia Haboussi,

Chafik MAIZA

и другие.

International Journal of Computing and Digital Systems, Год журнала: 2024, Номер 15(1), С. 989 - 1005

Опубликована: Фев. 5, 2024

Automatic Speech Recognition (ASR) systems have witnessed significant advancements in recent years, thanks to the emergence of deep learning techniques and availability large speech datasets various languages.With increasing demand for Arabic voice-enabled technologies, a high-quality representative dataset language becomes crucial.This paper presents development new called ArabAlg, specifically designed Command (ASCR), support integration voice recognition into smart devices Internet Things (IoT).This research focuses on collecting annotating diverse range commands, encompassing domains applications.The construction process involves recording preprocessing several utterances from native speakers.To ensure precision reliability, quality control measures are implemented during data collection annotation.The resulting provides valuable resource training evaluating ASCR tailored speakers using Machine Learning Deep Learning.

Язык: Английский

Процитировано

0

The symmetric technique of formant transition generation for use in speech synthesis in Arabic DOI
Lamari Chegrani,

Mhania Guerti,

Bachir Boudraa

и другие.

International Journal of Information Technology, Год журнала: 2024, Номер unknown

Опубликована: Июль 24, 2024

Язык: Английский

Процитировано

0