Web-Based Inventory, Stock Monitoring and Control System Powered by Local Encrypted Web Server DOI
Sandeep Singh,

Raman Kumar,

Arti Badhoutiya

и другие.

2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), Год журнала: 2024, Номер unknown, С. 741 - 744

Опубликована: Фев. 28, 2024

In this study, we introduce web-based inventory, stock monitoring, and control systems powered by a local encrypted web server. Through locally secured servers, novel technology emphasizes data protection, accessibility, while streamlining the installation of conventional software providing robust platform accessible from any device with regular browser. Real-time inventory control, user authentication, protected servers for increased privacy are some system's key features. With aid technology, businesses can keep an eye on their in real time, enabling proactive decision-making lowering likelihood inventory-related problems. user-friendly online interface, users easily manage adding, updating, or deleting goods, improving accuracy reducing mistakes. The capacity to customize system meet needs individual firms, whether small large, is distinguishing feature. To accommodate more users, locations as company change, grows effortlessly. An automated computing solution based electronic recording processing report production was developed part overcome these difficulties.

Язык: Английский

Enhanced brain tumor detection and classification using a deep image recognition generative adversarial network (DIR-GAN): a comparative study on MRI, X-ray, and FigShare datasets DOI

S. Karpakam,

N. Kumareshan

Neural Computing and Applications, Год журнала: 2025, Номер unknown

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

2

Dynamic Focus on Tumor Boundaries: A Lightweight U-Net for MRI Brain Tumor Segmentation DOI Creative Commons

Kuldashboy Avazov,

Sanjar Mirzakhalilov, Sabina Umirzakova

и другие.

Bioengineering, Год журнала: 2024, Номер 11(12), С. 1302 - 1302

Опубликована: Дек. 23, 2024

Accurate segmentation of brain tumors in MRI scans is critical for diagnosis and treatment planning. Traditional models, such as U-Net, excel capturing spatial information but often struggle with complex tumor boundaries subtle variations image contrast. These limitations can lead to inconsistencies identifying regions, impacting the accuracy clinical outcomes. To address these challenges, this paper proposes a novel modification U-Net architecture by integrating attention mechanism designed dynamically focus on relevant regions within scans. This innovation enhances model's ability delineate fine improves precision. Our model was evaluated Figshare dataset, which includes annotated images meningioma, glioma, pituitary tumors. The proposed achieved Dice similarity coefficient (DSC) 0.93, recall 0.95, an AUC 0.94, outperforming existing approaches V-Net, DeepLab V3+, nnU-Net. results demonstrate effectiveness our addressing key challenges like low-contrast boundaries, small overlapping Furthermore, lightweight design ensures its suitability real-time applications, making it robust tool automated segmentation. study underscores potential mechanisms significantly enhance medical imaging models paves way more effective diagnostic tools.

Язык: Английский

Процитировано

7

Advanced Deep Learning and Machine Learning Techniques for MRI Brain Tumor Analysis: A Review DOI Creative Commons

Rim Missaoui,

Wided Hechkel, Wajdi Saadaoui

и другие.

Sensors, Год журнала: 2025, Номер 25(9), С. 2746 - 2746

Опубликована: Апрель 26, 2025

A brain tumor is the result of abnormal growth cells in central nervous system (CNS), widely considered as a complex and diverse clinical entity that difficult to diagnose cure. In this study, we focus on current advances medical imaging, particularly magnetic resonance imaging (MRI), how machine learning (ML) deep (DL) algorithms might be combined with assessments improve diagnosis. Due its superior contrast resolution safety compared other methods, MRI highlighted preferred modality for tumors. The challenges related analysis different processes including detection, segmentation, classification, survival prediction are addressed along ML/DL approaches significantly these steps. We systematically analyzed 107 studies (2018–2024) employing ML, DL, hybrid models across publicly available datasets such BraTS, TCIA, Figshare. light recent developments analysis, many have been proposed accurately obtain ontological characteristics tumors, enhancing diagnostic precision personalized therapeutic strategies.

Язык: Английский

Процитировано

1

Optimized deep learning model for comprehensive medical image analysis across multiple modalities DOI
Saif Ur Rehman Khan,

Sohaib Asif,

Ming Zhao

и другие.

Neurocomputing, Год журнала: 2024, Номер 619, С. 129182 - 129182

Опубликована: Дек. 12, 2024

Язык: Английский

Процитировано

6

Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques DOI
Yogesh Kumar, Priya Bhardwaj, Supriya Shrivastav

и другие.

Neuroinformatics, Год журнала: 2025, Номер 23(2)

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

0

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning DOI
Asadullah Shaikh, Samina Amin, Muhammad Ali Zeb

и другие.

Computers in Biology and Medicine, Год журнала: 2025, Номер 186, С. 109703 - 109703

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

M-C&M-BL: a novel classification model for brain tumor classification: multi-CNN and multi-BiLSTM DOI Creative Commons
Muhammet Sinan Başarslan

The Journal of Supercomputing, Год журнала: 2025, Номер 81(3)

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

0

PVTAdpNet: polyp segmentation using pyramid vision transformer with a novel adapter block DOI

Arshia Yousefi Nezhad,

Helia Aghaei,

Hedieh Sajedi

и другие.

International Journal of Information Technology, Год журнала: 2025, Номер unknown

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

A novel convolution neural network architecture with fully connected network for efficient speech emotion recognition system DOI
Vandana Singh, Swati Prasad

International Journal of Information Technology, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

AITL-Net: An Adaptive Interpretable Transfer Learning Network with Robust Generalization for Liver Cancer Recognition DOI
Haipeng Zhu, Guoying Wang, Zhihong Liao

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113473 - 113473

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0