Optimization of heat and mass transfer in exothermic reactive fluids using advanced numerical methods and ANN models DOI
Shahzad Khattak, Mumtaz Khan, Mudassar Imran

и другие.

ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Год журнала: 2025, Номер 105(5)

Опубликована: Апрель 19, 2025

Abstract Artificial intelligence (AI) has emerged as a transformative tool in fluid flow modeling, offering enhanced simulation accuracy, optimization, and system performance. This study investigates the mixed convective of Jeffery over slendering sheet, incorporating effects thermal radiation, heat generation, Joule heating, chemical reactions. The governing partial differential equations (PDEs) are transformed into nonlinear ordinary (ODEs) solved using bvp4c solver MATLAB. To optimize artificial neural networks (ANNs) backpropagation (BPNNs) employed, leveraging Levenberg–Marquardt algorithm (LMA) for training validation. dataset is partitioned training, testing, validation, with performance evaluated mean squared error (MSE), curve‐fitting graphs, histograms. results demonstrate high MSE values consistently range validating robustness ANN‐LM LMA‐BPNN frameworks. Furthermore, physical parameters on momentum, thermal, concentration boundary layers examined detail. Heat generation found to enhance temperature profile, thickening layer, while variable thickness parameter improves skin friction, heat, mass transfer. Conversely, higher Schmidt numbers reduce profile due limited diffusivity. quantitative qualitative outcomes thoroughly analyzed, benchmarked against existing literature, showing close alignment. provides valuable insights influence key behavior establishes robust AI‐driven framework future research dynamics.

Язык: Английский

Bernoulli wavelet analysis of mixed convective magnetohydrodynamic boundary layer flow of Casson nanofluid over inclined stretching sheet with entropy generation DOI
S. C. Shiralashetti, Satyawati S. Joshi, S. I. Hanaji

и другие.

Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(3)

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

0

Stagnation point flow of γ-Al2O3 nanoparticles with suspension of blood and ethylene glycol materials: Thermal optimization through nonlinear radiative effects DOI
Nermeen Abdullah,

Sami Ullah Khan,

Kaouther Ghachem

и другие.

Journal of Radiation Research and Applied Sciences, Год журнала: 2025, Номер 18(2), С. 101484 - 101484

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

MHD ternary (Ag–CuO–SWCNT) blood-based Jeffrey nanofluid flow with surface catalyzed reaction DOI Creative Commons

A. S. Ashwinth Jeffrey,

M. Shanmugapriya,

R. Sundareswaran

и другие.

AIP Advances, Год журнала: 2025, Номер 15(4)

Опубликована: Апрель 1, 2025

The present study aims to investigate the effects of MHD non-Newtonian Jeffrey ternary hybrid nanofluid flow over a porous moving wedge with surface-catalyzed homogeneous–heterogeneous chemical reactions. To analyze energy transmission rate, this considers prominent nanoparticles silver (Ag), cupric oxide (CuO) and single-walled carbon nanotube (SWCNT) suspended in blood, which serves as base fluid. In fluid problem, momentum, energy, concentration, mass diffusion are inspected under influence magnetic field, thermal radiation, activation binary reactions, thermophoresis, Brownian motion. is significant due its potential improve heat transfer, catalysis, efficiency, biomedical applications. model mathematically, system partial differential equations (PDEs) formulated subsequently transformed into non-dimensional ordinary using suitable similarity variables. shooting technique implemented MATLAB obtain numerical solutions for dragging force (Cfx), rate (Nux), transport Shx, fluxes ShA ShB. This reveals that an increase medium parameter (Kp) reduces velocity profile, while (λ1) enhances it. volume fraction parameters (φAg, φCuO, φSWCNT), motion (Nb) thermophoresis (Nt) contribute temperature. concludes (Ag + CuO SWCNT/Blood) exhibits superior transfer capabilities it achieves 7.79% higher than (CuO SWCNT/Blood), 10.76% (SWCNT/Blood) 11.31% blood.

Язык: Английский

Процитировано

0

Optimization of heat and mass transfer in exothermic reactive fluids using advanced numerical methods and ANN models DOI
Shahzad Khattak, Mumtaz Khan, Mudassar Imran

и другие.

ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Год журнала: 2025, Номер 105(5)

Опубликована: Апрель 19, 2025

Abstract Artificial intelligence (AI) has emerged as a transformative tool in fluid flow modeling, offering enhanced simulation accuracy, optimization, and system performance. This study investigates the mixed convective of Jeffery over slendering sheet, incorporating effects thermal radiation, heat generation, Joule heating, chemical reactions. The governing partial differential equations (PDEs) are transformed into nonlinear ordinary (ODEs) solved using bvp4c solver MATLAB. To optimize artificial neural networks (ANNs) backpropagation (BPNNs) employed, leveraging Levenberg–Marquardt algorithm (LMA) for training validation. dataset is partitioned training, testing, validation, with performance evaluated mean squared error (MSE), curve‐fitting graphs, histograms. results demonstrate high MSE values consistently range validating robustness ANN‐LM LMA‐BPNN frameworks. Furthermore, physical parameters on momentum, thermal, concentration boundary layers examined detail. Heat generation found to enhance temperature profile, thickening layer, while variable thickness parameter improves skin friction, heat, mass transfer. Conversely, higher Schmidt numbers reduce profile due limited diffusivity. quantitative qualitative outcomes thoroughly analyzed, benchmarked against existing literature, showing close alignment. provides valuable insights influence key behavior establishes robust AI‐driven framework future research dynamics.

Язык: Английский

Процитировано

0