Enhancing sand cat swarm optimization based on multi-strategy mixing for solving engineering optimization problems DOI
Wenchuan Wang, Zheng Han, Zhao Zhang

и другие.

Evolutionary Intelligence, Год журнала: 2024, Номер 18(1)

Опубликована: Ноя. 16, 2024

Язык: Английский

Advancing Truss Structure Optimization— A Multi-Objective Weighted Average Algorithm with Enhanced Convergence and Diversity DOI Creative Commons

Divya Adalja,

Kanak Kalita, Lenka Čepová

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104241 - 104241

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

3

An enhanced ivy algorithm fusing multiple strategies for global optimization problems DOI

Chunqiang Zhang,

Wenzhou Lin, Gang Hu

и другие.

Advances in Engineering Software, Год журнала: 2025, Номер 203, С. 103862 - 103862

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

1

Enhanced monthly streamflow prediction using an input–output bi-decomposition data driven model considering meteorological and climate information DOI

Qiucen Guo,

Xuehua Zhao, Yuhang Zhao

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(8), С. 3059 - 3077

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

5

A Multi-strategy Slime Mould Algorithm for Solving Global Optimization and Engineering Optimization Problems DOI
Wenchuan Wang,

Wenhui Tao,

Wei-can Tian

и другие.

Evolutionary Intelligence, Год журнала: 2024, Номер 17(5-6), С. 3865 - 3889

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

3

Advancing Engineering Solutions with Protozoa-Based Differential Evolution: A Hybrid Optimization Approach DOI Creative Commons
Hussam N. Fakhouri, Faten Hamad, Abdelraouf Ishtaiwi

и другие.

Automation, Год журнала: 2025, Номер 6(2), С. 13 - 13

Опубликована: Март 28, 2025

This paper presents a novel Hybrid Artificial Protozoa Optimizer with Differential Evolution (HPDE), combining the biologically inspired principles of (APO) powerful optimization strategies (DE) to address complex and engineering design challenges. The HPDE algorithm is designed balance exploration exploitation features, utilizing innovative features such as autotrophic heterotrophic foraging behaviors, dormancy, reproduction processes alongside DE strategy. performance was evaluated on CEC2014 benchmark functions, it compared against two sets state-of-the-art optimizers comprising 23 different algorithms. results demonstrate HPDE’s good performance, outperforming competitors in 24 functions out 30 from first set second set. Additionally, has been successfully applied range problems, including robot gripper optimization, welded beam pressure vessel spring speed reducer cantilever three-bar truss optimization. consistently showcase solving these problems when competing

Язык: Английский

Процитировано

0

A novel reward-based golden jackal optimization algorithm uses mix-weighted dynamic and random opposition learning to solve optimization problems DOI

Sarada Mohapatra,

Priteesha Sarangi,

Prabhujit Mohapatra

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(5)

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

Diversity-enhanced adaptive golden jackal optimization based on multi-strategy and its engineering applications DOI
Wenjie Wang,

Boqin Zhang,

Zhao Liu

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(5)

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

Artificial Rabbit Optimizer with deep learning for fall detection of disabled people in the IoT Environment DOI Creative Commons

Eatedal Alabdulkreem,

Mesfer Alduhayyem,

Mohammed Abdullah Al-Hagery

и другие.

AIMS Mathematics, Год журнала: 2024, Номер 9(6), С. 15486 - 15504

Опубликована: Янв. 1, 2024

<abstract> <p>Fall detection (FD) for disabled persons in the Internet of Things (IoT) platform contains a combination sensor technologies and data analytics automatically identifying responding to samples falls. In this regard, IoT devices like wearable sensors or ambient from personal space role vital play always monitoring user's movements. FD employs deep learning (DL) an using sensors, namely accelerometers depth cameras, capture connected human DL approaches are frequently recurrent neural networks (RNNs) convolutional (CNNs) that have been trained on various databases recognizing patterns with The methods then executed edge cloud environments real-time investigation incoming data. This method differentiates normal activities potential falls, triggering alerts reports caregivers emergency numbers once fall is identified. We designed Artificial Rabbit Optimizer DL-based classification (ARODL-FDC) system environment. ARODL-FDC approach proposes detect categorize events assist elderly people people. technique comprises four-stage process. Initially, preprocessing input performed by Gaussian filtering (GF). applies residual network (ResNet) model feature extraction purposes. Besides, ARO algorithm has utilized better hyperparameter choice ResNet algorithm. At final stage, full Elman Neural Network (FENN) recognition events. experimental results can be tested dataset. simulation inferred reaches promising performance over compared models concerning measures.</p> </abstract>

Язык: Английский

Процитировано

2

PMSOMA: optical microscope algorithm based on piecewise linear chaotic mapping and sparse adaptive exploration DOI Creative Commons

Linyi Guo,

Wei Gu

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

2

Evaluating the impact of improved filter-wrapper input variable selection on Long-term runoff forecasting using local and global climate information DOI
Binlin Yang, Chen Lu, Bin Yi

и другие.

Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132034 - 132034

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

2