Evolutionary Intelligence, Год журнала: 2024, Номер 18(1)
Опубликована: Ноя. 16, 2024
Язык: Английский
Evolutionary Intelligence, Год журнала: 2024, Номер 18(1)
Опубликована: Ноя. 16, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104241 - 104241
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Advances in Engineering Software, Год журнала: 2025, Номер 203, С. 103862 - 103862
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
1Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(8), С. 3059 - 3077
Опубликована: Апрель 27, 2024
Язык: Английский
Процитировано
5Evolutionary Intelligence, Год журнала: 2024, Номер 17(5-6), С. 3865 - 3889
Опубликована: Июль 15, 2024
Язык: Английский
Процитировано
3Automation, Год журнала: 2025, Номер 6(2), С. 13 - 13
Опубликована: Март 28, 2025
This paper presents a novel Hybrid Artificial Protozoa Optimizer with Differential Evolution (HPDE), combining the biologically inspired principles of (APO) powerful optimization strategies (DE) to address complex and engineering design challenges. The HPDE algorithm is designed balance exploration exploitation features, utilizing innovative features such as autotrophic heterotrophic foraging behaviors, dormancy, reproduction processes alongside DE strategy. performance was evaluated on CEC2014 benchmark functions, it compared against two sets state-of-the-art optimizers comprising 23 different algorithms. results demonstrate HPDE’s good performance, outperforming competitors in 24 functions out 30 from first set second set. Additionally, has been successfully applied range problems, including robot gripper optimization, welded beam pressure vessel spring speed reducer cantilever three-bar truss optimization. consistently showcase solving these problems when competing
Язык: Английский
Процитировано
0Cluster Computing, Год журнала: 2025, Номер 28(5)
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0Cluster Computing, Год журнала: 2025, Номер 28(5)
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0AIMS Mathematics, Год журнала: 2024, Номер 9(6), С. 15486 - 15504
Опубликована: Янв. 1, 2024
<abstract> <p>Fall detection (FD) for disabled persons in the Internet of Things (IoT) platform contains a combination sensor technologies and data analytics automatically identifying responding to samples falls. In this regard, IoT devices like wearable sensors or ambient from personal space role vital play always monitoring user's movements. FD employs deep learning (DL) an using sensors, namely accelerometers depth cameras, capture connected human DL approaches are frequently recurrent neural networks (RNNs) convolutional (CNNs) that have been trained on various databases recognizing patterns with The methods then executed edge cloud environments real-time investigation incoming data. This method differentiates normal activities potential falls, triggering alerts reports caregivers emergency numbers once fall is identified. We designed Artificial Rabbit Optimizer DL-based classification (ARODL-FDC) system environment. ARODL-FDC approach proposes detect categorize events assist elderly people people. technique comprises four-stage process. Initially, preprocessing input performed by Gaussian filtering (GF). applies residual network (ResNet) model feature extraction purposes. Besides, ARO algorithm has utilized better hyperparameter choice ResNet algorithm. At final stage, full Elman Neural Network (FENN) recognition events. experimental results can be tested dataset. simulation inferred reaches promising performance over compared models concerning measures.</p> </abstract>
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
2Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132034 - 132034
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
2