An advanced real-time crash prediction framework for combined hard shoulder running and variable speed limits system using transformer DOI Creative Commons
Mohamed Abdel‐Aty, Tarek Hasan, B M Tazbiul Hassan Anik

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Ноя. 2, 2024

One of the important applications real-time crash prediction analysis lies in field proactive traffic management, where instantaneous risk evaluation and dynamic decision-making are prerequisites. This research proposes an integrated advanced framework for Variable Speed Limits (VSL) Hard Shoulder Running (HSR) implemented freeways considering their operational periods. Statistical methods utilized to identify significant contributing factors (related traffic, roadway geometry, weather conditions) explain relationships with crashes. Time-Embedded Transformer models proposed predict likelihood events. The sensitivity false alarm rate AM peak model found be 0.76 0.27, respectively, whereas values 0.78 0.24, respectively PM model. Additionally, results indicate substantial improvements performance (i.e., increment by 7.04% 8.33% models, respectively) after incorporating general safety condition a freeway segment as input feature while estimating models. Practitioners policymakers could apply this method obtain more accurate estimation, precursors, dynamically update algorithms, enhance aspects operating management strategies on freeways.

Язык: Английский

Time-Based Safety Performance Functions of Metered Ramps and Merge Sections DOI
Abdulrahman Faden, Mohamed Abdel‐Aty, Tarek Hasan

и другие.

Journal of Transportation Engineering Part A Systems, Год журнала: 2025, Номер 151(3)

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

2

The negative Binomial-Lindley model with Time-Dependent Parameters: Accounting for temporal variations and excess zero observations in crash data DOI
Richard Dzinyela, Mohammadali Shirazi, Subasish Das

и другие.

Accident Analysis & Prevention, Год журнала: 2024, Номер 207, С. 107711 - 107711

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

9

A real-time collision risk assessment method at tunnel entrance based on safety field theory DOI Creative Commons

Zhou Zhang,

Zhuoyan Wei,

Zheng Chen

и другие.

Multimodal Transportation, Год журнала: 2024, Номер 3(3), С. 100139 - 100139

Опубликована: Май 31, 2024

The main aim of this study was to propose a comprehensive risk indicator identify the potential driving caused by changing environment at tunnel entrance. Driving decisions are affected many external factors, especially entrance tunnels. However, indicators mostly considering vehicle movement status currently. In study, safe field model including obstacle field, and lighting is constructed evaluate influence roads, drivers, vehicles, change conditions on risk. Furthermore, distribution its temporal rate, (CDRI) established magnitude Finally, comparison between CDRI other two classic indicates that proposed in paper has better performance safety assessment It expected finding could be valuable developing control measures for in-tunnel declining.

Язык: Английский

Процитировано

4

Evaluating the safety impact of mid-block pedestrian signals (MPS) DOI
Md Jamil Ahsan, Mohamed Abdel‐Aty, Ahmed S. Abdelrahman

и другие.

Accident Analysis & Prevention, Год журнала: 2024, Номер 210, С. 107847 - 107847

Опубликована: Ноя. 25, 2024

Язык: Английский

Процитировано

4

Simulation optimization of highway hard shoulder running based on multi-agent deep deterministic policy gradient algorithm DOI

Lipeng Hu,

Jinjun Tang,

Guoqing Zou

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 117, С. 99 - 115

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

0

Pedestrian Crash Causation Near Bus Stops: Insights from Random Parameters Negative Binomial-Lindley Model DOI

Mohammad Anis,

Srinivas Reddy Geedipally, Dominique Lord

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A Network Screening Method for Short-Term Safety Performance DOI

Maroa Mumtarin,

Jonathan Wood

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Modeling highly dispersed crash data with sichel GAMLSS: An alternative approach to traditional methods DOI
Yajie Zou

Multidisciplinary Science Journal, Год журнала: 2025, Номер 7(8), С. 2025392 - 2025392

Опубликована: Фев. 12, 2025

This research examines the application of Sichel (SI) generalized additive models for location, scale, and shape (GAMLSS) in addressing challenge modeling highly dispersed crash data. The distribution, which combines Poisson distribution with inverse Gaussian is particularly suited data significant dispersion, where traditional often prove inadequate. primary objective this study was to assess performance GAMLSS comparison widely-used Negative Binomial (NB) linear model (GLM). To achieve this, developed evaluated NB, zero-inflated NB (ZINB), (PIG) SI using two datasets characterized by high dispersion. first dataset comprises from 338 rural interstate road sections Indiana, while second includes undivided 4-lane segments Texas. were compared a range goodness-of-fit criteria. Results demonstrate that offers better fit than ZINB PIG GLMs analyzed. Moreover, provides advantageous statistical properties, such as long-term mean never zero variance function driven two-parameter dispersion mechanism. Therefore, presents itself promising alternative analysis datasets.

Язык: Английский

Процитировано

0

The impact of shoulder characteristics on safety of highway in horizontal curves: a systematic literature review DOI Creative Commons

Md. Ebrahim Shaik,

Hadia Abid,

Deus Nyangoko Irecho

и другие.

Deleted Journal, Год журнала: 2025, Номер 2(1)

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0

Investigating influential factors through crash frequency models considering excess zeros and heterogeneity: New insights into mountain freeway safety DOI Creative Commons
Liang Zhang,

Zhongxiang Huang,

Yi‐Chun Zhu

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(4), С. e0320135 - e0320135

Опубликована: Апрель 9, 2025

The use of statistical modeling methods to quantify crash causation on mountain freeways is limited by data availability and technical challenges posed excess zeros heterogeneity, resulting in a lack significant targeting proactive prevention measures freeways. We collected multidimensional crash-related information mountainous China, including road design characteristics, traffic conditions, pavement performance, weather conditions. To overcome the heterogeneity techniques, we innovatively developed two new models: Random Parameter Negative Binomial Lindley (RPNB-L) model Generalized Exponential (RPNB-GE) model. goodness-of-fit indicates that RPNB-L RPNB-GE models stand out among six competing models, suggesting GE distributions are conducive portraying multi-zero attributes, while regression coefficients randomization treatment provides deeper portrayal heterogeneous effects. Moreover, analysis reveals considerable number causes for frequency China. These include several interesting results, such as special segments like tunnels interchanges, Pavement Damage Condition Index (PCI) stormy rainfall (TR), which have not been extensively studied previous research. research results provided important reference values selection active safety countermeasures

Язык: Английский

Процитировано

0