Neurosurgical Review, Год журнала: 2024, Номер 47(1)
Опубликована: Дек. 2, 2024
Язык: Английский
Neurosurgical Review, Год журнала: 2024, Номер 47(1)
Опубликована: Дек. 2, 2024
Язык: Английский
Precision Radiation Oncology, Год журнала: 2025, Номер unknown
Опубликована: Март 18, 2025
Abstract Background Ki‐67 is a key marker of tumor proliferation. This study aimed to develop machine learning models using single‐ and multi‐parameter MRI radiomic features for the preoperative prediction expression in primary central nervous system lymphoma (PCNSL), aiding prognosis individualized treatment planning. Methods A retrospective analysis 74 patients was conducted scans, including T1, contrast‐enhanced T2, T2‐FLAIR, DWI, ADC sequences. Patients were categorized into high‐expression (Ki‐67 > 70%) low‐expression ≤ groups. Tumor volumes interest (VOIs) manually delineated by radiologists, 851 extracted 3DSlicer. After preprocessing, bias field correction normalization, feature selection performed SelectKBest ANOVA. Eight classifiers, Logistic Regression, Random Forest, SVM, applied datasets. Results Multiparameter models, particularly Naive Bayes demonstrated superior predictive performance (AUC: 0.78, 0.73; AP: 0.90, 0.83) compared single‐parameter models. Decision curve highlighted that Regression provides highest net benefit, followed Bayes. Conclusion are more accurate stable predicting PCNSL, supporting clinical decision‐making.
Язык: Английский
Процитировано
2International Journal of Hyperthermia, Год журнала: 2025, Номер 42(1)
Опубликована: Март 23, 2025
Background Currently high-intensity focused ultrasound (HIFU) is widely used to treat uterine fibroids (UFs). The aim of this study develop a machine learning model that can accurately predict the efficacy HIFU ablation for UFs, assisting preoperative selection suitable patients with UFs.
Язык: Английский
Процитировано
1Academic Radiology, Год журнала: 2024, Номер unknown
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
3Frontiers in Oncology, Год журнала: 2025, Номер 15
Опубликована: Май 16, 2025
Purpose To assess and compare the effectiveness of magnetic resonance imaging (MRI) morphological features MRI histogram analysis in noninvasively predicting Ki-67 expression levels patients with IDH-wildtype glioblastoma. Methods Forty-six cases glioblastoma measured from January 2022 to July 2024 were retrospectively collected. They divided into low-level group (Ki-67<20%, n=20) high-level (Ki-67≥20%, n=26) according level. assessed recorded. performed on contrast-enhanced T1-weighted images. Differences between these parameters compared two groups. The diagnostic performance was by area under receiver operating characteristic curve (AUC). Spearman correlation used evaluate relationship Results Hemorrhage more prone occur ( P =0.017). min, P01, P50, P75 higher than those <0.00357). There a significant positive min r =0.774), P01 =0.729), P50 =0.625), =0.591), level <0.05). optimal obtained combining parameters, an AUC 0.867. Conclusion Both could predict glioblastoma, combined model integrating can be excellent biomarker for
Язык: Английский
Процитировано
0Clinical Neurology and Neurosurgery, Год журнала: 2024, Номер 246, С. 108579 - 108579
Опубликована: Окт. 2, 2024
Язык: Английский
Процитировано
1Neurosurgical Review, Год журнала: 2024, Номер 47(1)
Опубликована: Дек. 2, 2024
Язык: Английский
Процитировано
0