Development of high-performance fiber-reinforced concrete for drilling wellbore walls in highly mineralized strata and its sulfate attack resistanceattack resistance DOI Creative Commons

Z G Murzagil din,

Zhishu Yao, Kun Hu

и другие.

Materials Research Express, Год журнала: 2024, Номер 11(8), С. 085305 - 085305

Опубликована: Июль 26, 2024

Abstract Metakaolin has been incorporated into high-performance fiber-reinforced concrete for wellbore wall drilling to enhance its durability in strata with highly mineralized water. This study established a benchmark, utilizing fly ash, slag powder, and metakaolin as the factors an orthogonal test assess of against sulfate attack. The range analysis integrated balance method were employed optimize mix proportion, optimized proportion was determined concrete: cement: ash: powder: metakaolin: pumping agents: gravel: sand: water: polyvinyl alcohol = 1: 0.2: 0.075: 0.05: 0.106: 2.767: 1.556: 0.371: 0.003. apparent microscopic morphologies before after erosion both benchmark group investigated. triaxial permeability tests conducted on these groups under varying confining pressures elucidate trends. Additionally, damage constitutive model attack formulated based tests. could provide valuable insights industrial utilization deep shafts within water Northwestern China.

Язык: Английский

Exploring LightGBM-SHAP: Interpretable predictive modeling for concrete strength under high temperature conditions DOI
Shaoqiang Meng,

Zhenming Shi,

Chengzhi Xia

и другие.

Structures, Год журнала: 2025, Номер 71, С. 108134 - 108134

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

6

AI-driven design for the compressive strength of ultra-high performance geopolymer concrete (UHPGC): From explainable ensemble models to the graphical user interface DOI
Metin Katlav, Faruk Ergen, İzzeddin Dönmez

и другие.

Materials Today Communications, Год журнала: 2024, Номер 40, С. 109915 - 109915

Опубликована: Июль 22, 2024

Язык: Английский

Процитировано

14

High-strength self-compacting concrete produced with recycled clay brick powders: Rheological, mechanical and microstructural properties DOI
Ahmet Ferdi Şenol, Cenk Karakurt

Journal of Building Engineering, Год журнала: 2024, Номер 88, С. 109175 - 109175

Опубликована: Март 31, 2024

Язык: Английский

Процитировано

13

Development and optimization of geopolymer concrete with compressive strength prediction using particle swarm-optimized extreme gradient boosting DOI
Shimol Philip,

Nidhi Marakkath

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113149 - 113149

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

2

Optimizing compressive strength of hybrid fiber-reinforced recycled aggregate concrete: experimental investigation and ensemble machine learning approaches DOI
Jawad Tariq, Kui Hu, Syed Tafheem Abbas Gillani

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112256 - 112256

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Investigating horn power and impact of sonication on TiO2@cotton composites with machine learning and computer vision DOI
Muhammad Tayyab Noman, Nesrine Amor, Michal Petrů

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117424 - 117424

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Machine Learning as an Innovative Engineering Tool for Controlling Concrete Performance: A Comprehensive Review DOI

Fatemeh Mobasheri,

Masoud Hosseinpoor, Ammar Yahia

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

1

Machine learning guided iterative mix design of geopolymer concrete DOI
Haodong Ji, Yuhui Lyu, Weichao Ying

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 91, С. 109710 - 109710

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

9

Mechanical, durability and microstructural properties of waste-based concrete reinforced with sugarcane fiber DOI Creative Commons

Mohammad Valizadeh Kiamahalleh,

Aliakbar Gholampour, Tuan Ngo

и другие.

Structures, Год журнала: 2024, Номер 67, С. 107019 - 107019

Опубликована: Авг. 6, 2024

Extensive research has focused on producing sustainable concrete by exploring waste and recycled materials as alternatives to virgin substances. However, waste-based concretes often exhibit inferior durability mechanical performance compared traditional concrete. Incorporating reinforcement agents can enhance their performance. This study investigates the use of sugarcane fiber a in containing fly ash (FA), ground granulated blast furnace slag (GGBS), fine coarse aggregates (RFA RCA). Five dosages fibers (0 %, 1 2 3 4 % mass) were examined. Mechanical tests, including compressive strength, flexural water absorption, chloride ion penetration, conducted. Scanning electron microscopy micro-porosity analysis employed for further assessment. Results show that adding enhances properties, with being optimal dosage. dosage improves strength 16 35 load bearing capacity 34 energy absorption 107 toughness index 6 while reducing penetration 23 %. Further increases decrease properties. The enhanced behavior is attributed reduced porosity, refined pore structure, microcrack propagation. underscores potential incorporating along develop eco-friendly composites, aiming mitigate carbon dioxide emissions address environmental concerns.

Язык: Английский

Процитировано

8

Using ensemble machine learning and metaheuristic optimization for modelling the elastic modulus of geopolymer concrete DOI Creative Commons
Emadaldin Mohammadi Golafshani,

Seyed Ali Eftekhar Afzali,

Alireza A. Chiniforush

и другие.

Cleaner Materials, Год журнала: 2024, Номер 13, С. 100258 - 100258

Опубликована: Июнь 27, 2024

Geopolymer concrete emerges as a sustainable and durable alternative to conventional concrete, addressing its high carbon footprint enhanced durability. The distinct properties of geopolymer governed by supplementary cementitious materials alkaline activators, promise reduced environmental impact improved structural resilience. However, complex composition complicates the prediction mechanical such elastic modulus, crucial for applications. This study introduces an innovative approach using eXtreme Gradient Boosting (XGBoost) technique integrated with multi-objective grey wolf optimizer model modulus concrete. By dynamically selecting influential features optimizing accuracy, this methodology advances beyond traditional empirical models, which fail capture nonlinear interactions intrinsic Utilizing comprehensive database gathered from extensive literature, 22 potential variables were examined that influence concrete's modulus. After mitigating multicollinearity hyperparameters via Bayesian optimization, six XGBoost models developed different combinations input variables, revealing compressive strength total water content pivotal predictors. findings illustrate models' precision, trade-off between accuracy simplicity visualized through relationship number error. culminates in user-friendly graphical user interface enables easy fosters educational engagement. interface, available online, underscores practicality accessibility advanced machine learning predictions. Overall, research not only provides robust predictive framework optimized but also enhances understanding underlying determinants, contributing advancement construction materials.

Язык: Английский

Процитировано

7