CGJO: a novel complex-valued encoding golden jackal optimization DOI Creative Commons
Jinzhong Zhang, Gang Zhang,

Min Kong

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 23, 2024

Golden jackal optimization (GJO) is inspired by mundane characteristics and collaborative hunting behaviour, which mimics foraging, trespassing encompassing, capturing prey to refresh a jackal's position. However, the GJO has several limitations, such as slow convergence rate, low computational accuracy, premature convergence, poor solution efficiency, weak exploration exploitation. To enhance global detection ability this paper proposes novel complex-valued encoding golden (CGJO) achieve function engineering design. The strategy deploys dual-diploid organization encode real imaginary portions of converts dual-dimensional region single-dimensional manifestation region, increases population diversity, restricts search stagnation, expands area, promotes information exchange, fosters collaboration efficiency improves accuracy. CGJO not only exhibits strong adaptability robustness supplementary advantages but also balances local exploitation promote precision determine best solution. CEC 2022 test suite six real-world designs are utilized evaluate effectiveness feasibility CGJO. compared with three categories existing algorithms: (1) WO, HO, NRBO BKA recently published algorithms; (2) SCSO, GJO, RGJO SGJO highly cited (3) L-SHADE, LSHADE-EpsSin CMA-ES performing algorithms. experimental results reveal that superior those other superiority reliability quicker greater computation precision, stability robustness.

Язык: Английский

Blood-sucking leech optimizer DOI
Jianfu Bai, H. Nguyen‐Xuan, Elena Atroshchenko

и другие.

Advances in Engineering Software, Год журнала: 2024, Номер 195, С. 103696 - 103696

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

21

A multi-objective optimization of porous sandwich functionally graded plates with graphene nanoplatelet reinforcement using Blood-Sucking leech Optimizer DOI
Jianfu Bai, Nam V. Nguyen, H. Nguyen‐Xuan

и другие.

Composite Structures, Год журнала: 2025, Номер unknown, С. 118921 - 118921

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A comprehensive survey of golden jacal optimization and its applications DOI
Mehdi Hosseinzadeh, Jawad Tanveer, Amir Masoud Rahmani

и другие.

Computer Science Review, Год журнала: 2025, Номер 56, С. 100733 - 100733

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

Multi-Strategy Golden Jackal Optimization for engineering design DOI
Wenbiao Yang,

Thin Lai,

Yangwang Fang

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

A metaheuristic optimization framework inspired by virus mutations and its ability to optimize the structural design of 2D and 3D steel frames compared to other methods DOI Creative Commons
Mehdi Ghasri, Hamid Reza Karimi, Abdolhamid Salarnia

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105020 - 105020

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

An efficient multi-objective algorithm based on Rao and differential evolution for solving bi-objective truss optimization DOI

Manh-Cuong Nguyen,

Hoang-Anh Pham, Viet-Hung Truong

и другие.

Engineering Optimization, Год журнала: 2025, Номер unknown, С. 1 - 31

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

A novel reward-based golden jackal optimization algorithm uses mix-weighted dynamic and random opposition learning to solve optimization problems DOI

Sarada Mohapatra,

Priteesha Sarangi,

Prabhujit Mohapatra

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(5)

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System DOI Creative Commons
Yongjie Yang,

Yulong Li,

Yan Cai

и другие.

Energies, Год журнала: 2024, Номер 17(15), С. 3738 - 3738

Опубликована: Июль 29, 2024

In order to address the issues of significant energy and resource waste, low-energy management efficiency, high building-maintenance costs in hot-summer cold-winter regions China, a research project was conducted on an office building located Nantong. this study, data-driven golden jackal optimization (GJO)-based Long Short-Term Memory (LSTM) short-term energy-consumption prediction system is proposed. The creates equivalent model employs genetic algorithm tool Wallacei automatically optimize control building’s air conditioning system, thereby achieving objective reducing consumption. To validate authenticity scheme, unoptimized consumption predicted using consumption-prediction model. actual comparison data confirmed that reduction resulted from implementing conditioning-optimization scheme rather than external factors. optimized can achieve hourly saving rate 6% 9%, with average daily energy-saving reaching 8%. entire therefore, enables decision-makers swiftly assess efficacy consumption-optimization programs, furnishing scientific foundation for real-world buildings.

Язык: Английский

Процитировано

1

CGJO: a novel complex-valued encoding golden jackal optimization DOI Creative Commons
Jinzhong Zhang, Gang Zhang,

Min Kong

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 23, 2024

Golden jackal optimization (GJO) is inspired by mundane characteristics and collaborative hunting behaviour, which mimics foraging, trespassing encompassing, capturing prey to refresh a jackal's position. However, the GJO has several limitations, such as slow convergence rate, low computational accuracy, premature convergence, poor solution efficiency, weak exploration exploitation. To enhance global detection ability this paper proposes novel complex-valued encoding golden (CGJO) achieve function engineering design. The strategy deploys dual-diploid organization encode real imaginary portions of converts dual-dimensional region single-dimensional manifestation region, increases population diversity, restricts search stagnation, expands area, promotes information exchange, fosters collaboration efficiency improves accuracy. CGJO not only exhibits strong adaptability robustness supplementary advantages but also balances local exploitation promote precision determine best solution. CEC 2022 test suite six real-world designs are utilized evaluate effectiveness feasibility CGJO. compared with three categories existing algorithms: (1) WO, HO, NRBO BKA recently published algorithms; (2) SCSO, GJO, RGJO SGJO highly cited (3) L-SHADE, LSHADE-EpsSin CMA-ES performing algorithms. experimental results reveal that superior those other superiority reliability quicker greater computation precision, stability robustness.

Язык: Английский

Процитировано

1