Elucidating Electronic Structure Variations in Nucleic Acid-Protein Complexes Involved in Transcription Regulation Using a Tight-Binding Approach DOI Creative Commons
Likai Du,

Chengbu Liu

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2024, Номер unknown

Опубликована: Апрель 19, 2024

Abstract Transcription factor (TF) are proteins that regulates the transcription of genetic information from DNA to messenger RNA by binding a specific sequence. Nucleic acid-protein interactions crucial in regulating biological systems. This work presents quick and convenient method for constructing tight-binding models offers physical insights into electronic structure properties complexes motifs. The tight Hamiltonian parameters generated using random forest regression algorithm, which reproduces given ab-initio level calculations with reasonable accuracy. We present library residue-level derived extensive over various possible combinations nucleobases amino acid side chains high-quality DNA-protein complex structures. As an example, our approach can reasonably generate subtle details orthologous factors human AP-1 Epstein-Barr virus Zta within few seconds on laptop. potentially enhances understanding variations gene-protein interaction complexes, even those involving dozens genes. hope this study powerful tool analyzing regulation mechanisms at structural level. Topic Content bind modulate gene expression, stability reactivity their elucidated eigenvalues model. Visualization these reveals Highest Occupied Molecular Orbital (HOMO) Lowest Unoccupied (LUMO), gap between determines molecular complex. advances revealing dynamics charge transfer states factor-DNA complexes.

Язык: Английский

A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor DOI
Seho Son,

Hyunseung Lee,

Dayeon Jeong

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 57, С. 102035 - 102035

Опубликована: Июнь 11, 2023

Язык: Английский

Процитировано

26

A review on the progress, challenges and prospects in the modeling, simulation, control and diagnosis of thermodynamic systems DOI
Dengji Zhou, Dawen Huang

Advanced Engineering Informatics, Год журнала: 2024, Номер 60, С. 102435 - 102435

Опубликована: Март 3, 2024

Язык: Английский

Процитировано

13

Assessing illumination fatigue in tunnel workers through eye-tracking technology: A laboratory study DOI
Jing Li, J.-G. Zhu,

Cheng Guan

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 59, С. 102335 - 102335

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

11

A process knowledge-based hybrid method for univariate time series prediction with uncertain inputs in process industry DOI

Linjin Sun,

Yangjian Ji, Qixuan Li

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 60, С. 102438 - 102438

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

4

Low-carbon power demand forecasting models for the performance optimization of new energy robotics systems DOI Creative Commons
Huangnian Zhang, Chuanhao Zhang

International Journal of Low-Carbon Technologies, Год журнала: 2025, Номер 20, С. 341 - 352

Опубликована: Янв. 1, 2025

Abstract To improve the performance of new energy-powered robots, a method for optimizing robots has been proposed, based on low-carbon power demand forecasting model. The approach advocated leveraging to optimize system design and control strategies. Then, model robotic demands was established, alongside refinement evaluation mechanism. Results indicated significant correlation between operational parameters linked performance. precision our notably high, enabling provision specific optimization strategies tailored diverse contexts.

Язык: Английский

Процитировано

0

Stochastic Algorithm-Based Optimization using Artificial Intelligence/Machine Learning Models for Sorption Enhanced Steam Methane Reformer Reactor DOI

Sumit K. Bishnu,

Sabla Y. Alnouri,

Dhabia M. Al Mohannadi

и другие.

Computers & Chemical Engineering, Год журнала: 2025, Номер unknown, С. 109060 - 109060

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

AI-Driven Random Forest Model and the Six Sigma Approach for Enhancing Offset Printing Process and Product Quality DOI Creative Commons
Diana Bratić, Petar Miljković,

Denis Jurečić

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2266 - 2266

Опубликована: Фев. 20, 2025

The Six Sigma methodology for quality improvement enabled a high degree of process compliance and enhanced capability. This research develops new model optimizing the offset printing based on approach, with aim reducing variability achieving stable, predictable production outcomes. Special focus was placed defining Critical Product Characteristics (CPCs) to Quality (CTQs) points analysing their impact output quality, defined by sigma level. Based research, limits parameters were ensure consistency product quality. integration Artificial Intelligence (AI) within framework allowed additional automation adaptation changing conditions. use Random Forest efficient analysis critical points, prediction potential deviations, real-time adjustment. AI is utilized improve precision efficiency in management, which further enhances stability optimization line dynamic demands modern production. proposed represents an innovative approach that facilitates maintaining stable results provides sustainable foundation future optimizations industry.

Язык: Английский

Процитировано

0

A nonlinear dynamics method using multi-sensor signal fusion for fault diagnosis of rotating machinery DOI
Fei Chen, Jie Liu, Xiaoxi Hu

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103190 - 103190

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

Application of ensemble empirical mode decomposition with support vector regression and wavelet neural network in electric load forecasting DOI
Guo‐Feng Fan,

Wei Hui-zhen,

Hsin‐Pou Huang

и другие.

Energy Sources Part B Economics Planning and Policy, Год журнала: 2025, Номер 20(1)

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

Optimising and analysis of the hydraulic performance of a water dispersion needle sprinkler using RF-NSGA II and CFD DOI
Hong Li, Xuwei Pan, Yue Jiang

и другие.

Biosystems Engineering, Год журнала: 2025, Номер 254, С. 104113 - 104113

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0