Aerial infrared thermal imaging transmission line defect detection methods incorporating explicit visual center structures DOI
Guowei Dai, Chaoyu Wang, Qingfeng Tang

и другие.

Measurement, Год журнала: 2024, Номер unknown, С. 116605 - 116605

Опубликована: Дек. 1, 2024

Язык: Английский

Reinforced concrete beam full response prediction with hybrid feature-orientation transformer-LSTM model DOI

Zecheng Yu,

Bing Li

Engineering Structures, Год журнала: 2025, Номер 332, С. 120040 - 120040

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

0

Improving 2D displacement accuracy in bridge vibration measurement with color space fusion and super resolution DOI
Qixuan He, Sen Wang

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103248 - 103248

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0

Integrating crack pattern entropy measures with synthesized learners for accumulated seismic damage evaluation in reinforced concrete frames DOI
Mostafa Kaboodkhani, Mohammadjavad Hamidia, Hamid Bayesteh

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103271 - 103271

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

0

A Novel YOLOv10-DECA Model for Real-Time Detection of Concrete Cracks DOI Creative Commons

Chaokai Zhang,

Ningbo Peng, Jiaheng Yan

и другие.

Buildings, Год журнала: 2024, Номер 14(10), С. 3230 - 3230

Опубликована: Окт. 11, 2024

The You Only Look Once (YOLO) series algorithms have been widely adopted in concrete crack detection, with attention mechanisms frequently being incorporated to enhance recognition accuracy and efficiency. However, existing research is confronted by two primary challenges: the suboptimal performance of mechanism modules lack explanation regarding how these influence model’s decision-making process improve accuracy. To address issues, a novel Dynamic Efficient Channel Attention (DECA) module proposed this study, which designed YOLOv10 model effectiveness visually demonstrated through application interpretable analysis algorithms. In paper, dataset complex background used. Experimental results indicate that DECA significantly improves localization detection discontinuous cracks, outperforming (ECA). When compared similarly sized YOLOv10n model, YOLOv10-DECA demonstrates improvements 4.40%, 3.06%, 4.48%, 5.56% precision, recall, mAP50, mAP50-95 metrics, respectively. Moreover, even when larger YOLOv10s indicators are increased 2.00%, 0.04%, 2.27%, 1.12%, terms speed evaluation, owing lightweight design module, achieves an inference 78 frames per second, 2.5 times faster than YOLOv10s, thereby fully meeting requirements for real-time detection. These demonstrate optimized balance between tasks has achieved model. Consequently, study provides valuable insights future applications field.

Язык: Английский

Процитировано

3

Ceramic tableware surface defect detection based on deep learning DOI
Pu Sun, Changchun Hua, Weili Ding

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 141, С. 109723 - 109723

Опубликована: Дек. 5, 2024

Язык: Английский

Процитировано

2

A Unet-inspired spatial-attention transformer model for segmenting gear tooth surface defects DOI
Xin Zhou, Yongchao Zhang, Zhaohui Ren

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102933 - 102933

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

Sscan: Spatial and Semantic Context-Aware Network for Worker Detection at Construction Site DOI

Chunyu Xiang,

Yuewei Lin,

Bocheng Zhou

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Aerial infrared thermal imaging transmission line defect detection methods incorporating explicit visual center structures DOI
Guowei Dai, Chaoyu Wang, Qingfeng Tang

и другие.

Measurement, Год журнала: 2024, Номер unknown, С. 116605 - 116605

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0