Research on the impact of enterprise digital transformation based on digital twin technology on renewable energy investment decisions DOI Creative Commons
Mengxi Cao, Wonwook Song,

Yanyan Xu

и другие.

Energy Informatics, Год журнала: 2024, Номер 7(1)

Опубликована: Дек. 30, 2024

In the context of global climate change and sustainable development, enterprise digital transformation has become key to improving efficiency competitiveness. Digital twin technology, as an emerging tool, enables real-time monitoring, prediction, optimization by creating dynamic virtual models real-world processes. This paper explores impact twin-based on renewable energy investment decisions. Through empirical analysis over 200 companies globally, study finds that using technology exhibit higher accuracy in These show improved forecasting consumption returns, gaining a competitive edge. On average, these experience 15% ROI increase for their investments enjoy 20% acceleration decision-making process. Furthermore, delves into how adoption differs across various company sizes industries, providing actionable insights guidance enterprises embarking journey.

Язык: Английский

What is a Digital Twin anyway? Deriving the definition for the built environment from over 15,000 scientific publications DOI Creative Commons
Mahmoud Abdelrahman, Edgardo Macatulad, Binyu Lei

и другие.

Building and Environment, Год журнала: 2025, Номер unknown, С. 112748 - 112748

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges DOI Creative Commons

Yalda Mousavi,

Zahra Gharineiat, Armin Agha Karimi

и другие.

Smart Cities, Год журнала: 2024, Номер 7(5), С. 2594 - 2615

Опубликована: Сен. 10, 2024

Digital Twin (DT) technology is a pivotal innovation within the built environment industry, facilitating digital transformation through advanced data integration and analytics. DTs have demonstrated significant benefits in building design, construction, asset management, including optimising lifecycle energy use, enhancing operational efficiency, enabling predictive maintenance, improving user adaptability. By integrating real-time from IoT sensors with analytics, provide dynamic actionable insights for better decision-making resource management. Despite these promising benefits, several challenges impede widespread adoption of DT technology, such as technological integration, consistency, organisational adaptation, cybersecurity concerns. Addressing requires interdisciplinary collaboration, standardisation formats, development universal design platforms DTs. This paper provides comprehensive review definitions, applications, capabilities, Architecture, Engineering, Construction (AEC) industries. important researchers professionals, helping them gain more detailed view DT. The findings also demonstrate impact that can on this sector, contributing to advancing implementations promoting sustainable efficient management practices. Ultimately, set revolutionise AEC industries by autonomous, data-driven operations enhanced productivity performance.

Язык: Английский

Процитировано

4

Six-dimensional digital twin modeling and software platform design for complex industrial systems DOI
Nan Li, Gang Xie, Xiaohong Zhang

и другие.

Journal of Intelligent Manufacturing, Год журнала: 2025, Номер unknown

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

0

Research on Optimization of Motor Cooling Based on Digital Twins DOI

大凯 管

Modeling and Simulation, Год журнала: 2025, Номер 14(01), С. 839 - 853

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Machine-Learning Based Validation of a Digital Twin Spacecraft for Health-Management System Applications DOI
Soraya León, Hever Moncayo

AIAA SCITECH 2022 Forum, Год журнала: 2025, Номер unknown

Опубликована: Янв. 3, 2025

Язык: Английский

Процитировано

0

Integrated registration and utility of mobile AR Human-Machine collaborative assembly in rail transit DOI
Jiu Yong, Jianguo Wei,

Xiaomei Lei

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103168 - 103168

Опубликована: Фев. 17, 2025

Язык: Английский

Процитировано

0

Digital twin system for real-time response prediction and hazard warning of a flexible hose in deep-sea mining DOI
Jiaying Wang, Jialin Liu,

Yong Zou

и другие.

Ocean Engineering, Год журнала: 2025, Номер 324, С. 120676 - 120676

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

Transforming the maintenance of underground infrastructure through Digital Twins: State of the art and outlook DOI Creative Commons
Huamei Zhu, Mengqi Huang, Pei-Qi Ji

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 161, С. 106508 - 106508

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

0

A Review of Industrial Digital Twin Technology Research: Progress, Challenges and Future Directions DOI Creative Commons
Songming Liu

International Journal of Computer Science and Information Technology, Год журнала: 2025, Номер 5(2), С. 13 - 21

Опубликована: Фев. 27, 2025

With the rapid development of industrial Internet, Internet Things (IoT), and big data technologies, digital twin technology has emerged as a pivotal tool in enhancing productivity, optimizing resource allocation, driving evolution smart manufacturing systems. This paper provides comprehensive review current state research on twins, exploring their applications across various sectors such production processes, equipment management, quality control. The highlights technological advances that have enabled widespread adoption including virtual modeling, real-time transmission processing, fusion. It also discusses key challenges faced by industries implementing accuracy integration, complexity model construction, need for standardization cross-platform integration. Additionally, addresses ongoing trends field, increasing integration twins with artificial intelligence, machine learning, cloud computing. Finally, an outlook future directions research, identifying areas further innovation application, offers recommendations overcoming limitations to support wider adoption. By summarizing progress challenges, this aims provide theoretical insights practical guidance advancing technology.

Язык: Английский

Процитировано

0

Parallel simulation and prediction techniques for digital twins in urban underground spaces DOI

Haofeng Gong,

Dong Su,

Shiqi Zeng

и другие.

Automation in Construction, Год журнала: 2025, Номер 175, С. 106212 - 106212

Опубликована: Апрель 21, 2025

Язык: Английский

Процитировано

0