Advances in Engineering Software, Год журнала: 2024, Номер 198, С. 103793 - 103793
Опубликована: Окт. 22, 2024
Язык: Английский
Advances in Engineering Software, Год журнала: 2024, Номер 198, С. 103793 - 103793
Опубликована: Окт. 22, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер 25, С. 103933 - 103933
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
4Alexandria Engineering Journal, Год журнала: 2025, Номер 120, С. 296 - 317
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
2Advances in Engineering Software, Год журнала: 2025, Номер 203, С. 103862 - 103862
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
1Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Апрель 13, 2025
Язык: Английский
Процитировано
0Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 116008 - 116008
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112968 - 112968
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Biomimetics, Год журнала: 2025, Номер 10(3), С. 168 - 168
Опубликована: Март 10, 2025
To address the challenges of low optimization efficiency and premature convergence in existing algorithms for unmanned aerial vehicle (UAV) 3D path planning under complex operational constraints, this study proposes an enhanced honey badger algorithm (LRMHBA). First, a three-dimensional terrain model incorporating threat sources UAV constraints is constructed to reflect actual environment. Second, LRMHBA improves global search by optimizing initial population distribution through integration Latin hypercube sampling elite strategy. Subsequently, stochastic perturbation mechanism introduced facilitate escape from local optima. Furthermore, adapt evolving exploration requirements during process, employs differential mutation strategy tailored populations with different fitness values, utilizing individuals initialization stage guide process. This design forms two-population cooperative that enhances balance between exploitation, thereby improving accuracy. Experimental evaluations on CEC2017 benchmark suite demonstrate superiority over 11 comparison algorithms. In task, consistently generated shortest average across three obstacle simulation scenarios varying complexity, achieving highest rank Friedman test.
Язык: Английский
Процитировано
0Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112149 - 112149
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Microchemical Journal, Год журнала: 2025, Номер unknown, С. 113410 - 113410
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Biomimetics, Год журнала: 2025, Номер 10(4), С. 232 - 232
Опубликована: Апрель 8, 2025
A multi-strategy enhanced version of the escape algorithm (mESC, for short) is proposed to address challenges balancing exploration and development stages low convergence accuracy in (ESC). Firstly, an adaptive perturbation factor strategy was employed maintain population diversity. Secondly, introducing a restart mechanism enhance capability mESC. Finally, dynamic centroid reverse learning designed balance local development. In addition, order accelerate global speed, boundary adjustment based on elite pool proposed, which selects individuals replace bad individuals. Comparing mESC with latest metaheuristic high-performance winner CEC2022 testing suite, numerical results confirmed that outperforms other competitors. superiority handling problems verified through several classic real-world optimization problems.
Язык: Английский
Процитировано
0