
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
Plant and Soil, Год журнала: 2025, Номер unknown
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0International Journal of Plant Production, Год журнала: 2025, Номер unknown
Опубликована: Май 26, 2025
Язык: Английский
Процитировано
0Agronomy, Год журнала: 2025, Номер 15(6), С. 1389 - 1389
Опубликована: Июнь 5, 2025
The prediction of soil moisture conditions using multispectral data from unmanned aerial vehicles (UAVs) has advantages over ground measurements in terms costs and monitoring range. However, the accuracy for spectral alone is low. In this study, relationships between water deficits phenotypic characteristics oats were evaluated used to develop a UAV multispectral-based model. vegetation indices NDRE (Normalized Difference Red Edge), CIG (Chlorophyll Index), MCARI (Modified Chlorophyll Absorption Reflectance Index) highly correlated with oat yield. Based on multipath analysis structural equation modeling framework, irrigation (p < 0.01), leaf area index (LAI) 0.001), SPAD 0.001) had direct positive effects NDRE. Three distinct machine learning approaches—linear regression (LR), random forest (RF), artificial neural network (ANN) employed establish predictive models Normalized Edge Index (NDRE) content (SWC). linear model showed moderate correlation (R2 = 0.533). Machine approaches demonstrated markedly superior performance (RF: R2 0.828; ANN: 0.810). Nonlinear algorithms (RF ANN) significantly outperform conventional estimating SWC indices.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
2Cereal Research Communications, Год журнала: 2024, Номер unknown
Опубликована: Июль 30, 2024
Abstract Biofertilisers harbouring living organisms hold allure due to their prospective favourable influence on plant growth, coupled with a diminished environmental footprint and cost-effectiveness in contrast conventional mineral fertilisers. The purpose of the present study was evaluate capacity specific microalga (MACC-612, Nostoc linckia ) biomass growth-promoting bacteria (PGPB) separately together improve crop growth promote soil health. research used factorial design within completely randomised block framework, featuring four replications for three consecutive years across different fields. experiment utilised levels (control, 0.3 g/L N. , MACC-612, 1 MACC-612) bacterial strains Azospirillum lipoferum Pseudomonas fluorescens ). result demonstrated that use PGPB or jointly as treatment resulted substantial improvement chlorophyll, biomass, humus, nitrogen, depending conditions years. combined results an dry leaf weight by 35.6–107.3% at 50 days after sowing (DAS) 29.6–49.8% 65 DAS, compared control group. Furthermore, studies show synergistic application g/L, conjunction A. significantly improved total nitrogen (NO 3 − + NO 2 )-nitrogen, registering increases 20.7–40% 27.1–59.2%, respectively, during period. most effective combination identified through along . Hence, biofertilisers combinations two more microorganisms, such microalgae bacteria, holds promise improving nitrogen.
Язык: Английский
Процитировано
2Plant Stress, Год журнала: 2024, Номер 14, С. 100651 - 100651
Опубликована: Окт. 28, 2024
Язык: Английский
Процитировано
1Plant Stress, Год журнала: 2024, Номер 14, С. 100675 - 100675
Опубликована: Ноя. 13, 2024
Язык: Английский
Процитировано
1Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
0