
Agricultural Water Management, Год журнала: 2024, Номер 306, С. 109159 - 109159
Опубликована: Ноя. 6, 2024
Язык: Английский
Agricultural Water Management, Год журнала: 2024, Номер 306, С. 109159 - 109159
Опубликована: Ноя. 6, 2024
Язык: Английский
Agriculture, Год журнала: 2024, Номер 14(7), С. 1141 - 1141
Опубликована: Июль 14, 2024
Water is considered one of the vital natural resources and factors for performing short- long-term agricultural practices on Earth. Meanwhile, globally, most available freshwater are utilized irrigation purposes in agriculture. Currently, many world regions facing extreme water shortage problems, which can worsen if not managed properly. In literature, numerous methods remedies used to cope with increasing global crises. The use precision water-saving systems (PISs) efficient management under climate change them a highly recommended approach by researchers. It mitigate adverse effects changing help enhance efficiency, crop yield, environmental footprints. Thus, present study aimed comprehensively examine review PISs, focusing their development, implementation, positive impacts sustainable management. addition, we searched literature using different online search engines reviewed summarized main results previously published papers PISs. We discussed traditional method its modernization enhancing PIS monitoring controlling, architecture, data sharing communication technologies, role artificial intelligence water-saving, future prospects PIS. Based brief review, concluded that PISs seems bright, driven need systems, technological advancements, awareness. As scarcity problem intensifies due population growth, poised play critical optimizing modernizing usage, reducing footprints, thus ensuring agriculture development.
Язык: Английский
Процитировано
75Journal of Hydrology, Год журнала: 2024, Номер 637, С. 131336 - 131336
Опубликована: Май 12, 2024
Язык: Английский
Процитировано
15Agricultural Water Management, Год журнала: 2024, Номер 302, С. 108972 - 108972
Опубликована: Июль 30, 2024
Accurate and timely prediction of soil moisture in orchards is crucial for making informed irrigation decisions at a regional scale. Conventional methods monitoring are often limited by high cost disruption structure, etc. However, unmanned aerial vehicle (UAV) remote sensing, with spatial temporal resolutions, offers an effective alternative moisture. In this study, multi-modal UAV sensing data, including RGB, thermal infrared (TIR), multi-spectral (Mul) were acquired citrus orchards. The correlations between different sensor data analyzed to construct seven input combinations. Convolutional neural network (CNN), long short-term memory (LSTM) models new hybrid model (CNN-LSTM), employed predict depths 5 cm, 10 20 cm 40 cm. Additionally, the impact standalone sensor, texture features multi-sensor fusion on accuracy was explored. results indicated that RGB + Mul TIR achieved highest accuracy, followed those Mul, coefficient determination (R2) ranging 0.80–0.88, 0.64–0.84, 0.60–0.81, root mean square error (RMSE) 2.46–2.99 m3·m−3, 2.86–3.89 m3·m−3 3.15–4.25 respectively. Among single inputs, has 0.54–0.72, 0.36–0.52 0.14–0.26, 3.72–4.58 %, 3.81–5.04 % 4.27–6.21 CNN-LSTM exhibited CNN LSTM models, 0.20–0.88, 0.16–0.83, 0.14–0.81, 2.46–5.01 2.68–5.35 2.81–6.21 depth average 0.63, 0.62, 0.59, 0.55, 3.70 3.79 3.85 4.21 Therefore, recommended orchard. It provides method support precision decision-making.
Язык: Английский
Процитировано
13Sensors, Год журнала: 2025, Номер 25(3), С. 618 - 618
Опубликована: Янв. 21, 2025
Chlorophyll is crucial for pear tree growth and fruit quality. In order to integrate the unmanned aerial vehicle (UAV) multispectral vegetation indices textural features realize estimation of SPAD value leaves, this study used UAV remote sensing images ground measurements extract features, analyze their correlation with leaves during expansion period tree. Finally, four machine learning methods, namely XGBoost, random forest (RF), back-propagation neural network (BPNN), optimized integration algorithm (OIA), were construct inversion models trees, different feature inputs based on indices, combinations, respectively. Moreover, differences among these compared. The results showed following: (1) both significantly correlated values, which important indicators estimating values leaves; (2) combining improved accuracy compared a single type; (3) algorithms demonstrated good predictive ability, OIA model outperformed model, having best accuracy, R2 0.931 0.877 training validation sets, This efficacy integrating multiple accurately invert which, in turn, supported refined management orchards.
Язык: Английский
Процитировано
0Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 335 - 379
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(4)
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0Landslides, Год журнала: 2025, Номер unknown
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128172 - 128172
Опубликована: Май 1, 2025
Процитировано
0Journal of soil science and plant nutrition, Год журнала: 2024, Номер unknown
Опубликована: Окт. 25, 2024
Язык: Английский
Процитировано
2Agricultural Water Management, Год журнала: 2024, Номер 306, С. 109173 - 109173
Опубликована: Ноя. 22, 2024
Язык: Английский
Процитировано
2