Applying exponential unit for breaking symmetry of memristive maps DOI
Vo Phu Thoai, Christos Volos, Antonio Vincenzo Radogna

и другие.

Physica Scripta, Год журнала: 2024, Номер 99(2), С. 025244 - 025244

Опубликована: Янв. 17, 2024

Abstract The emergence of memristors has piqued significant interest in memristive maps due to their unique characteristics. In this paper, we introduce a novel and effective method for constructing memristor maps, leveraging the power exponential units. Interestingly, incorporation these units disrupts symmetry alters count fixed points within map. is simple build with chaos higher order maps. These make our work different from existing methods. To demonstrate efficacy approach, have focused attention on examining dynamics, feasibility, practical applications specific map, referred as EPMM 1 Furthermore, show that by extending it becomes straightforward create other innovative including those multiple memristors.

Язык: Английский

Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow DOI
Shaohua Zhang, Cong Wang, Hongli Zhang

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115191 - 115191

Опубликована: Июнь 28, 2024

Язык: Английский

Процитировано

20

Reliability and energy function of an oscillator and map neuron DOI
Qun Guo,

Guodong Ren,

Chunni Wang

и другие.

Biosystems, Год журнала: 2025, Номер 251, С. 105443 - 105443

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

1

Generating multi-scroll chaotic attractor in a three-dimensional memristive neuron model DOI

Ruoyu Ding,

Han Bao, Ning Wang

и другие.

Chinese Journal of Physics, Год журнала: 2024, Номер 88, С. 1053 - 1067

Опубликована: Фев. 9, 2024

Язык: Английский

Процитировано

7

Assessing sigmoidal function on memristive maps DOI Creative Commons
Vo Phu Thoai, Viet–Thanh Pham, Giuseppe Grassi

и другие.

Heliyon, Год журнала: 2024, Номер 10(6), С. e27781 - e27781

Опубликована: Март 1, 2024

Memristors offer a crucial element for constructing discrete maps that have garnered significant attention in complex dynamics and various potential applications. In this study, we integrated memristive sigmoidal function to propose innovative mapping techniques. Our research confirms the amalgamation of memristor functions represents promising approach creating both 2D 3D maps. Particularly noteworthy are chaotic featuring multiple memristors, as highlighted our findings. Specifically focusing on novel STMM1 map, delve into its assess feasibility. Intriguingly, introduction leads alterations quantity fixed points symmetry map.

Язык: Английский

Процитировано

6

Complete synchronization of three-layer Rulkov neuron network coupled by electrical and chemical synapses DOI Open Access
Penghe Ge, Libo Cheng, Hongjun Cao

и другие.

Chaos An Interdisciplinary Journal of Nonlinear Science, Год журнала: 2024, Номер 34(4)

Опубликована: Апрель 1, 2024

This paper analyzes the complete synchronization of a three-layer Rulkov neuron network model connected by electrical synapses in same layers and chemical between adjacent layers. The outer coupling matrix is not Laplacian as linear networks. We develop master stability function method, which invariant manifold equations (MSEs) does correspond to zero eigenvalues connection matrix. After giving existence conditions about nonlinear coupling, we investigate dynamics manifold, will be identical that synchronous fixing parameters initial values. waveforms show transient chaotic windows approximate periodic with increased or decreased periods occur alternatively before asymptotic behaviors. Furthermore, Lyapunov exponents MSEs indicate can achieve synchronization, while not. Finally, simulate effects small perturbations on regimes evolution routes for non-synchronous network.

Язык: Английский

Процитировано

5

Analysis of memristive maps with asymmetry DOI
Viet–Thanh Pham, Andrei Velichko, Van Van Huynh

и другие.

Integration, Год журнала: 2023, Номер 94, С. 102110 - 102110

Опубликована: Ноя. 9, 2023

Язык: Английский

Процитировано

9

A Memristive Neuron with Nonlinear Membranes and Network Patterns DOI

Binchi Wang,

Yaquan Wang, Xiaofeng Zhang

и другие.

Опубликована: Янв. 1, 2025

Memristor-coupled nonlinear circuits can replicate biological neuron firing patterns by incorporating memristive and magnetic flux variables to model electromagnetic induction. Traditional models with single capacitive fail capture the material properties field differences of cell membranes. This work proposes a neural circuit dual capacitors, resistor, flux-controlled memristor (MFCM) in parallel, driven phototube simulate illumination. The accounts for dynamics double-layer membranes exhibits energy-defined behaviors. Photocurrent fully controls modes, stochastic resonance analyzed via coefficient variability energy distributions under noise. An adaptive growth law modulates membrane capacitance ratios, enabling mode transitions shifts. In network, control coupling bifurcation parameters induces stable target waves, effectively regulating collective dynamics. study highlights neurons' potential mimicking complex behaviors network

Язык: Английский

Процитировано

0

Collective dynamics of a coupled Hindmarsh–Rose neurons with locally active memristor DOI
Sathiyadevi Kanagaraj, Premraj Durairaj,

Sivaperumal Sampath

и другие.

Biosystems, Год журнала: 2023, Номер 232, С. 105010 - 105010

Опубликована: Авг. 24, 2023

Язык: Английский

Процитировано

6

Applying exponential unit for breaking symmetry of memristive maps DOI
Vo Phu Thoai, Christos Volos, Antonio Vincenzo Radogna

и другие.

Physica Scripta, Год журнала: 2024, Номер 99(2), С. 025244 - 025244

Опубликована: Янв. 17, 2024

Abstract The emergence of memristors has piqued significant interest in memristive maps due to their unique characteristics. In this paper, we introduce a novel and effective method for constructing memristor maps, leveraging the power exponential units. Interestingly, incorporation these units disrupts symmetry alters count fixed points within map. is simple build with chaos higher order maps. These make our work different from existing methods. To demonstrate efficacy approach, have focused attention on examining dynamics, feasibility, practical applications specific map, referred as EPMM 1 Furthermore, show that by extending it becomes straightforward create other innovative including those multiple memristors.

Язык: Английский

Процитировано

0