Applied Mathematics Letters, Год журнала: 2025, Номер 169, С. 109609 - 109609
Опубликована: Май 17, 2025
Язык: Английский
Applied Mathematics Letters, Год журнала: 2025, Номер 169, С. 109609 - 109609
Опубликована: Май 17, 2025
Язык: Английский
AIMS Mathematics, Год журнала: 2025, Номер 10(3), С. 5568 - 5582
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0AIMS Mathematics, Год журнала: 2025, Номер 10(3), С. 7319 - 7338
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Computers & Mathematics with Applications, Год журнала: 2025, Номер 189, С. 1 - 23
Опубликована: Апрель 2, 2025
Язык: Английский
Процитировано
0International Journal for Numerical Methods in Engineering, Год журнала: 2025, Номер 126(10)
Опубликована: Май 20, 2025
ABSTRACT In this work, we present a unified algorithm framework for multimaterial topology optimization with various graded interfaces based on the phase field method. framework, problem is transformed into solving set of linear partial differential equations (PDEs). We then introduce scalar variable to grade material property, resulting in complex nonlinear interpolation operator effective elastic tensor. Following that, define an auxiliary substitute all transformations elliptic equation system. A second‐order accurate Crank–Nicolson scheme applied reformulated system, which high‐order terms are treated semi‐explicit fashion. prove that proposed unconditionally energy stable and demonstrate its stability as well accuracy by numerical examples. series benchmark problems different interfacial behaviors topological design investigated verify effectiveness our The sensitivity parameters model analyzed evaluate their effects structure.
Язык: Английский
Процитировано
0Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2025, Номер unknown, С. 108762 - 108762
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(7), С. 1085 - 1085
Опубликована: Март 26, 2025
We propose an unconditionally stable computational algorithm that preserves the maximum principle for three-dimensional (3D) high-order Allen–Cahn (AC) equation. The presented applies operator-splitting technique decomposes original equation into nonlinear and linear diffusion equations. To guarantee unconditional stability of numerical solution, we solve using frozen coefficient technique, which simplifies computations by approximating variable coefficients constants within small regions. For equation, use implicit finite difference scheme under method. validate efficiency proposed algorithm, conducted several tests. results confirm achieves even large time step sizes polynomial potential. In addition, analyze motion mean curvature in space show solutions closely match analytical solutions. Finally, robustness method is evaluated noisy data conditions, its ability to accurately classify complex structures demonstrated. These reliability simulating phase-field models with a
Язык: Английский
Процитировано
0Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2025, Номер unknown, С. 108875 - 108875
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Applied Mathematics Letters, Год журнала: 2025, Номер 169, С. 109609 - 109609
Опубликована: Май 17, 2025
Язык: Английский
Процитировано
0