Enhancing Rooftop Photovoltaic Segmentation Using Spatial Feature Reconstruction and Multi-Scale Feature Aggregation DOI Creative Commons
Xiao Yu, Long Lin, Jun Ma

и другие.

Energies, Год журнала: 2024, Номер 18(1), С. 119 - 119

Опубликована: Дек. 31, 2024

Amidst the dual challenges of energy shortages and global warming, photovoltaic (PV) power generation has emerged as a critical technology due to its efficient utilization solar energy. Rooftops, underutilized spaces, are ideal locations for installing panels, avoiding need additional land. However, accurate generalized segmentation large-scale PV panel images remains technical challenge, primarily varying image resolutions, large scales, significant imbalance between foreground background categories. To address these challenges, this paper proposes novel model based on Res2Net architecture, an enhanced version classic ResNet optimized multi-scale feature extraction. The integrates Spatial Feature Reconstruction aggregation modules, enabling effective extraction data features precise reconstruction spatial features. These improvements particularly designed handle small proportion panels in images, effectively distinguishing target from redundant ones improving recognition accuracy. Comparative experiments conducted publicly available rooftop dataset demonstrate that proposed method achieves superior performance compared mainstream techniques, showcasing effectiveness segmentation.

Язык: Английский

Assessing the Potential Impact of Aerosol Scenarios for Rooftop PV Regional Deployment DOI
Bingchun Liu, S. P. Zhao, Shize Zheng

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122869 - 122869

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Experimental study of liquid optical filtration PV/T modules with different working fluids DOI
Yuanlong Cui, S. Tian, Jie Zhu

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122893 - 122893

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A time-series dynamic optimization model for distributed photovoltaic capacity planning considering the coupling of capacity and sales price DOI
Peng Wang, Jiaqi Wu,

Yihong Ding

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122911 - 122911

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Enhancing Rooftop Photovoltaic Segmentation Using Spatial Feature Reconstruction and Multi-Scale Feature Aggregation DOI Creative Commons
Xiao Yu, Long Lin, Jun Ma

и другие.

Energies, Год журнала: 2024, Номер 18(1), С. 119 - 119

Опубликована: Дек. 31, 2024

Amidst the dual challenges of energy shortages and global warming, photovoltaic (PV) power generation has emerged as a critical technology due to its efficient utilization solar energy. Rooftops, underutilized spaces, are ideal locations for installing panels, avoiding need additional land. However, accurate generalized segmentation large-scale PV panel images remains technical challenge, primarily varying image resolutions, large scales, significant imbalance between foreground background categories. To address these challenges, this paper proposes novel model based on Res2Net architecture, an enhanced version classic ResNet optimized multi-scale feature extraction. The integrates Spatial Feature Reconstruction aggregation modules, enabling effective extraction data features precise reconstruction spatial features. These improvements particularly designed handle small proportion panels in images, effectively distinguishing target from redundant ones improving recognition accuracy. Comparative experiments conducted publicly available rooftop dataset demonstrate that proposed method achieves superior performance compared mainstream techniques, showcasing effectiveness segmentation.

Язык: Английский

Процитировано

0