Building Simulation, Год журнала: 2024, Номер unknown
Опубликована: Дек. 21, 2024
Язык: Английский
Building Simulation, Год журнала: 2024, Номер unknown
Опубликована: Дек. 21, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109218 - 109218
Опубликована: Авг. 31, 2024
Язык: Английский
Процитировано
23Measurement Science and Technology, Год журнала: 2024, Номер 35(7), С. 072002 - 072002
Опубликована: Март 19, 2024
Abstract The health condition of rolling bearings has a direct impact on the safe operation rotating machinery. And their working environment is harsh and complex, which brings challenges to fault diagnosis. With development computer technology, deep learning been applied in field diagnosis rapidly developed. Among them, convolutional neural network (CNN) received great attention from researchers due its powerful data mining ability feature adaptive ability. Based recent research hotspots, history trend CNN summarized analyzed. Firstly, basic structure introduced important progress classical models for bearing years studied. problems with classic algorithm have pointed out. Secondly, solve above problems, combined achievements, various methods principles optimizing are compared perspectives extraction, hyperparameter optimization, optimization. Although significant made based CNN, there still room improvement addressing issues such as low accuracy imbalanced data, weak model generalization, poor interpretability. Therefore, future networks discussed finally. transfer improve generalization interpretable used increase interpretability networks.
Язык: Английский
Процитировано
11Energy, Год журнала: 2024, Номер 297, С. 131159 - 131159
Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
11Building Simulation, Год журнала: 2024, Номер 17(7), С. 1113 - 1136
Опубликована: Июнь 20, 2024
Язык: Английский
Процитировано
6IEEE Access, Год журнала: 2024, Номер 12, С. 103348 - 103379
Опубликована: Янв. 1, 2024
This paper presents a comprehensive survey on interpretable intelligent fault diagnosis for rotating machinery, addressing the challenge of "black box" nature machine learning techniques that hampers reliability in automated diagnostic processes. It underscores growing importance interpretability (IFD), marking shift from traditional signal processing methods to learning-based approaches necessitate transparency trustworthiness. Our review systematically collates and examines spectrum IFD, distinguishing between post-hoc ante-hoc strategies. We detail mainstream methods, their applications, critique limitations, particularly absence physical significance. The then explores incorporate knowledge upfront, enhancing interpretability. By categorizing evaluating three distinct embedding approaches, we shed light unique applications. Conclusively, highlight emerging research directions challenges field, aiming equip readers with nuanced understanding current methodologies inspire future studies making IFD more reliable interpretable.
Язык: Английский
Процитировано
6Applied Thermal Engineering, Год журнала: 2024, Номер 257, С. 124308 - 124308
Опубликована: Сен. 2, 2024
Язык: Английский
Процитировано
5Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114876 - 114876
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
4International Journal of Refrigeration, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 393, С. 126169 - 126169
Опубликована: Май 20, 2025
Язык: Английский
Процитировано
0Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 219, С. 115867 - 115867
Опубликована: Май 27, 2025
Язык: Английский
Процитировано
0