Efficient feature selection for enhanced chiller fault diagnosis: A multi-source ranking information-driven ensemble approach DOI
Zhanwei Wang,

Penghua Xia,

Jingjing Guo

и другие.

Building Simulation, Год журнала: 2024, Номер unknown

Опубликована: Дек. 21, 2024

Язык: Английский

A new chiller fault diagnosis method under the imbalanced data environment via combining an improved generative adversarial network with an enhanced deep extreme learning machine DOI

Wenxin Yang,

Hanyuan Zhang,

Jit Bing Lim

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109218 - 109218

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

23

A review on convolutional neural network in rolling bearing fault diagnosis DOI
Xin Li, Zengqiang Ma, Zonghao Yuan

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(7), С. 072002 - 072002

Опубликована: Март 19, 2024

Abstract The health condition of rolling bearings has a direct impact on the safe operation rotating machinery. And their working environment is harsh and complex, which brings challenges to fault diagnosis. With development computer technology, deep learning been applied in field diagnosis rapidly developed. Among them, convolutional neural network (CNN) received great attention from researchers due its powerful data mining ability feature adaptive ability. Based recent research hotspots, history trend CNN summarized analyzed. Firstly, basic structure introduced important progress classical models for bearing years studied. problems with classic algorithm have pointed out. Secondly, solve above problems, combined achievements, various methods principles optimizing are compared perspectives extraction, hyperparameter optimization, optimization. Although significant made based CNN, there still room improvement addressing issues such as low accuracy imbalanced data, weak model generalization, poor interpretability. Therefore, future networks discussed finally. transfer improve generalization interpretable used increase interpretability networks.

Язык: Английский

Процитировано

11

Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach DOI
Mohd Herwan Sulaiman, Zuriani Mustaffa

Energy, Год журнала: 2024, Номер 297, С. 131159 - 131159

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

11

An interpretable graph convolutional neural network based fault diagnosis method for building energy systems DOI
Guannan Li,

Zhanpeng Yao,

Liang Chen

и другие.

Building Simulation, Год журнала: 2024, Номер 17(7), С. 1113 - 1136

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

6

Enhancing Reliability Through Interpretability: A Comprehensive Survey of Interpretable Intelligent Fault Diagnosis in Rotating Machinery DOI Creative Commons
Gang Chen,

Junlin Yuan,

Yiyue Zhang

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 103348 - 103379

Опубликована: Янв. 1, 2024

This paper presents a comprehensive survey on interpretable intelligent fault diagnosis for rotating machinery, addressing the challenge of "black box" nature machine learning techniques that hampers reliability in automated diagnostic processes. It underscores growing importance interpretability (IFD), marking shift from traditional signal processing methods to learning-based approaches necessitate transparency trustworthiness. Our review systematically collates and examines spectrum IFD, distinguishing between post-hoc ante-hoc strategies. We detail mainstream methods, their applications, critique limitations, particularly absence physical significance. The then explores incorporate knowledge upfront, enhancing interpretability. By categorizing evaluating three distinct embedding approaches, we shed light unique applications. Conclusively, highlight emerging research directions challenges field, aiming equip readers with nuanced understanding current methodologies inspire future studies making IFD more reliable interpretable.

Язык: Английский

Процитировано

6

An enhanced digital twin-driven fault detection and isolation method based on sensor series imaging mechanism for gas turbine engine DOI

Zexi Jin,

Jinxin Liu,

Maojun Xu

и другие.

Applied Thermal Engineering, Год журнала: 2024, Номер 257, С. 124308 - 124308

Опубликована: Сен. 2, 2024

Язык: Английский

Процитировано

5

Interpretability assessment of convolutional neural network-based fault diagnosis for air handling units working in three seasons DOI
Chenglong Xiong, Hu Yunpeng, Guannan Li

и другие.

Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114876 - 114876

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

4

A metro train air conditioning system fault diagnosis method based on explainable artificial intelligence: Considering interpretability and generalization DOI

Minhui Jiang,

Huanxin Chen, Chuang Yang

и другие.

International Journal of Refrigeration, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Customized large-scale model for human-AI collaborative operation and maintenance management of building energy systems DOI
Siliang Chen, Xinbin Liang, Liu Ying

и другие.

Applied Energy, Год журнала: 2025, Номер 393, С. 126169 - 126169

Опубликована: Май 20, 2025

Язык: Английский

Процитировано

0

Advanced fault detection, diagnosis and prognosis in HVAC systems: Lifecycle insight, key challenges, and promising approaches DOI
Zhanwei Wang, Yi‐Xian Qin, Yifan Kong

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 219, С. 115867 - 115867

Опубликована: Май 27, 2025

Язык: Английский

Процитировано

0