High-accuracy full-coverage PM 2.5 retrieval from 2014 to 2023 over China based on satellite remote sensing and hierarchical deep learning model DOI Creative Commons
Yulong Fan, Lin Sun, Xirong Liu

и другие.

International Journal of Digital Earth, Год журнала: 2024, Номер 17(1)

Опубликована: Сен. 23, 2024

Язык: Английский

Evaluation of Long-Term Performance of Six PM2.5 Sensor Types DOI Creative Commons
Karoline K. Barkjohn,

Robert Yaga,

B Thomas

и другие.

Sensors, Год журнала: 2025, Номер 25(4), С. 1265 - 1265

Опубликована: Фев. 19, 2025

From July 2019 to January 2021, six models of PM2.5 air sensors were operated at seven quality monitoring sites across the U.S. in Arizona, Colorado, Delaware, Georgia, North Carolina, Oklahoma, and Wisconsin. Common PM sensor data issues identified, including repeat zero measurements, false high outliers, baseline shift, varied relationships between monitor, relative humidity (RH) influences. While these are often easy identify during colocation, they more challenging or correct deployment since it is hard differentiate real pollution events malfunctions. Air may exhibit wildly different performances even if have same similar internal components. Commonly used RH corrections still variable bias by hour day seasonally. Most show promise achieving Environmental Protection Agency (EPA) performance targets, findings here can be improve their reliability further. This evaluation generated a robust dataset colocated monitor data, making publicly available along with results presented this paper, we hope will an asset community understanding validating new methods.

Язык: Английский

Процитировано

0

Influence of seasonal variation on spatial distribution of PM2.5 concentration using low-cost sensors DOI
Sandeep Kumar Chaudhry,

Sachchida Nand Tripathi,

T. V. Ramesh Reddy

и другие.

Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(12)

Опубликована: Ноя. 21, 2024

Процитировано

2

High-Accuracy Pm2.5 Retrieval Based on Satellite Remote Sensing and Hierarchical Machine Learning Model DOI
Yulong Fan, Lin Sun, Xirong Liu

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

1

High-accuracy full-coverage PM 2.5 retrieval from 2014 to 2023 over China based on satellite remote sensing and hierarchical deep learning model DOI Creative Commons
Yulong Fan, Lin Sun, Xirong Liu

и другие.

International Journal of Digital Earth, Год журнала: 2024, Номер 17(1)

Опубликована: Сен. 23, 2024

Язык: Английский

Процитировано

0