INNOVATIVE MONITORING OF WATER ENVIRONMENT IN VANAME SHRIMP FARMING BASED ON LORAWAN DOI Open Access

Dani Puput,

Muhammad Yassir,

Iwan Purnama

и другие.

Journal of Southwest Jiaotong University, Год журнала: 2024, Номер 59(1)

Опубликована: Янв. 1, 2024

The sudden vaname shrimp death factors are overfeeding, disease infection, failure to mount, stress, and high rainfall, which cause potential changes in water pH that trigger anxiety shrimp. next factor is turbid or dirty water. Other include insufficient oxygen content the Therefore, overcome these issues, a sensor explicitly handles conditions needed. system built this research still has two stages, namely real-time monitoring automatic actuators, being developed. placed floating condition with specific materials so it impossible sink. Some tested sensors salinity, pH, turbidity, dissolved sensors. Its wireless telecommunication uses LoRa frequencies of 920–923 MHz. It an 8-dBi omnidirectional antenna Dragino RFM96 Module chip. This provides data on entire environment needed for survive. development after focused actuator, how turn Blower automatically needs results shown from experiment all brackish quality measurements running normally; displayed application server real time using Tago.io app been connected LoRaWAN Module, 915 MHz found end devices. installed were calibrated produce accurate data. Keywords: environment, innovative sensor, farming, monitoring, smart aquaculture DOI: https://doi.org/10.35741/issn.0258-2724.59.1.18

Язык: Английский

AI-driven aquaculture: A review of technological innovations and their sustainable impacts DOI Creative Commons
Hang Yang, Feng Qi, Shibin Xia

и другие.

Artificial Intelligence in Agriculture, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks DOI Open Access

Daiwei Pan,

Yue Zhang, Ying Deng

и другие.

Water, Год журнала: 2024, Номер 16(5), С. 707 - 707

Опубликована: Фев. 28, 2024

Dissolved oxygen (DO) concentration is a pivotal determinant of water quality in freshwater lake ecosystems. However, rapid population growth and discharge polluted wastewater, urban stormwater runoff, agricultural non-point source pollution runoff have triggered significant decline DO levels Lake Erie other lakes located populated temperate regions the globe. Over eleven million people rely on Erie, which has been adversely impacted by anthropogenic stressors resulting deficient concentrations near bottom Erie’s Central Basin for extended periods. In past, hybrid long short-term memory (LSTM) models successfully used time-series forecasting rivers ponds. prediction errors tend to grow significantly with period. Therefore, this research aimed improve accuracy taking advantage real-time (water temperature concentration) monitoring network establish temporal spatial links between adjacent stations. We developed LSTM that combine LSTM, convolutional neuron (CNN-LSTM), CNN gated recurrent unit (CNN-GRU) models, (ConvLSTM) forecast near-bottom Basin. These their capacity handle complicated datasets variability. can serve as accurate reliable tools help environmental protection agencies better access manage health these vital Following analysis 21-site dataset 2020 2021, ConvLSTM model emerged most reliable, boasting an MSE 0.51 mg/L, MAE 0.42 R-squared 0.95 over 12 h range. The foresees future hypoxia Erie. Notably, site 713 holds significance indicated outcomes derived from Shapley additive explanations (SHAP).

Язык: Английский

Процитировано

7

Attention-driven LSTM and GRU deep learning techniques for precise water quality prediction in smart aquaculture DOI

Rahul Gandh D,

V. P. Harigovindan,

Rasheed Abdul Haq K P

и другие.

Aquaculture International, Год журнала: 2024, Номер 32(6), С. 8455 - 8478

Опубликована: Июль 9, 2024

Язык: Английский

Процитировано

5

A review of aquaculture: From single modality analysis to multimodality fusion DOI

Wanchao Li,

Zhuangzhuang Du, Xianbao Xu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 226, С. 109367 - 109367

Опубликована: Сен. 13, 2024

Язык: Английский

Процитировано

5

Research on millet origin identification model based on improved parrot optimizer optimized regularized extreme learning machine DOI
Peng Gao, Na Wang, Yang Lü

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107354 - 107354

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Improving multi-step dissolved oxygen prediction in aquaculture using adaptive temporal convolution and optimized transformer DOI

Kaixuan Shao,

Daoliang Li, Hao Tang

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110329 - 110329

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

0

Application of AR-ELM in SOFC Parameter Identification DOI

博远 李

Operations Research and Fuzziology, Год журнала: 2025, Номер 15(02), С. 591 - 600

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Depth prediction of urban waterlogging based on BiTCN-GRU modeling DOI Creative Commons
Quan Wang,

Mingjie Tang,

Pei Shi

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(4), С. e0321637 - e0321637

Опубликована: Апрель 23, 2025

With China’s rapid urbanization and the increasing frequency of extreme weather events, heavy rainfall-induced urban waterlogging has become a persistent pressing challenge. Accurately predicting depth is essential for disaster prevention loss mitigation. However, existing hydrological models often require extensive data have complex structures, resulting in low prediction accuracy limited generalization capabilities. To address these challenges, this paper proposes hybrid deep learning-based approach, BiTCN-GRU model, flood-prone areas. This model integrates Bidirectional Temporal Convolutional Networks (BiTCN) Gated Recurrent Units (GRU) to enhance performance. Specifically, gated recurrent units employed task. temporal convolutional network can effectively capture information features during rainfall by forward backward convolution use them as inputs GRU. Experimental results demonstrate great performance proposed achieving MAE, RMSE, R 2 values 1.56, 3.62, 88.31% Minshan Road, 3.44, 8.08, 92.64% Huaihe Road datasets, respectively. Compared such GBDT, LSTM, TCN-LSTM, exhibits higher depth. provides robust solution short-term prediction, offering valuable scientific insights theoretical support

Язык: Английский

Процитировано

0

A long-term multi-input and multi-output predictive model for key water quality factors in an aquaculture environment DOI

Jingzhe Hu,

Mengdi Li, Lu Liu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 237, С. 110498 - 110498

Опубликована: Май 20, 2025

Язык: Английский

Процитировано

0

Hybrid Recurrent Convolutional Network Based on Transformer Encoder Optimisation for Dissolved Oxygen Prediction in Grouper Aquaculture DOI

Kaixuan Shao,

Hao Tang, Yonghui Zhang

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1