Sensors,
Год журнала:
2024,
Номер
24(23), С. 7710 - 7710
Опубликована: Дек. 2, 2024
This
work
aims
to
develop
a
novel
convolutional
neural
network
(CNN)
named
ResNet50*
detect
various
gastrointestinal
diseases
using
new
ResNet50*-based
deep
feature
engineering
model
with
endoscopy
images.
The
novelty
of
this
is
the
development
ResNet50*,
variant
ResNet
model,
featuring
convolution-based
residual
blocks
and
pooling-based
attention
mechanism
similar
PoolFormer.
Using
image
dataset
was
trained,
an
explainable
(DFE)
developed.
DFE
comprises
four
primary
stages:
(i)
extraction,
(ii)
iterative
selection,
(iii)
classification
shallow
classifiers,
(iv)
information
fusion.
self-organizing,
producing
14
different
outcomes
(8
classifier-specific
6
voted)
selecting
most
effective
result
as
final
decision.
During
heatmaps
are
identified
gradient-weighted
class
activation
mapping
(Grad-CAM)
features
derived
from
these
regions
via
global
average
pooling
layer
pretrained
ResNet50*.
Four
selectors
employed
in
selection
stage
obtain
distinct
vectors.
classifiers
k-nearest
neighbors
(kNN)
support
vector
machine
(SVM)
used
produce
specific
outcomes.
Iterative
majority
voting
voted
top
determined
by
greedy
algorithm
based
on
accuracy.
presented
trained
augmented
version
Kvasir
dataset,
its
performance
tested
Kvasir,
2,
wireless
capsule
(WCE)
curated
colon
disease
datasets.
Our
proposed
demonstrated
accuracy
more
than
92%
for
all
three
datasets
remarkable
99.13%
WCE
dataset.
These
findings
affirm
superior
ability
confirm
generalizability
developed
architecture,
showing
consistent
across
Scientific Reports,
Год журнала:
2024,
Номер
14(1)
Опубликована: Март 13, 2024
Abstract
Endoscopy,
a
widely
used
medical
procedure
for
examining
the
gastrointestinal
(GI)
tract
to
detect
potential
disorders,
poses
challenges
in
manual
diagnosis
due
non-specific
symptoms
and
difficulties
accessing
affected
areas.
While
supervised
machine
learning
models
have
proven
effective
assisting
clinical
of
GI
scarcity
image-label
pairs
created
by
experts
limits
their
availability.
To
address
these
limitations,
we
propose
curriculum
self-supervised
framework
inspired
human
learning.
Our
approach
leverages
HyperKvasir
dataset,
which
comprises
100k
unlabeled
images
pre-training
10k
labeled
fine-tuning.
By
adopting
our
proposed
method,
achieved
an
impressive
top-1
accuracy
88.92%
F1
score
73.39%.
This
represents
2.1%
increase
over
vanilla
SimSiam
1.9%
score.
The
combination
curriculum-based
demonstrates
efficacy
advancing
disorders.
study
highlights
utilizing
improve
paving
way
more
accurate
efficient
endoscopy.
Robotic Intelligence and Automation,
Год журнала:
2024,
Номер
44(1), С. 131 - 151
Опубликована: Март 18, 2024
Purpose
Nowadays,
food
problems
are
likely
to
arise
because
of
the
increasing
global
population
and
decreasing
arable
land.
Therefore,
it
is
necessary
increase
yield
agricultural
products.
Pesticides
can
be
used
improve
land
This
study
aims
make
spraying
cherry
trees
more
effective
efficient
with
designed
artificial
intelligence
(AI)-based
unmanned
aerial
vehicle
(UAV).
Design/methodology/approach
Two
approaches
have
been
adopted
for
AI-based
detection
trees:
In
approach
1,
YOLOv5,
YOLOv7
YOLOv8
models
trained
70,
100
150
epochs.
Approach
2,
a
new
method
proposed
performance
metrics
obtained
in
1.
Gaussian,
wavelet
transform
(WT)
Histogram
Equalization
(HE)
preprocessing
techniques
were
applied
generated
data
set
2.
The
best-performing
1
2
real-time
test
application
developed
UAV.
Findings
best
F1
score
was
98%
epochs
YOLOv5s
model.
mAP
values
as
98.6%
98.9%
epochs,
YOLOv5m
model
an
improvement
0.6%
score.
tests,
drone
system
detected
sprayed
accuracy
66%
77%
It
revealed
that
use
pesticides
could
reduced
by
53%
energy
consumption
47%.
Originality/value
An
original
created
designing
detect
spray
using
AI.
classify
trees.
results
compared.
including
HE,
Gaussian
WT
proposed,
improved.
effect
experimental
thoroughly
analyzed.
International Journal of Intelligent Systems,
Год журнала:
2025,
Номер
2025(1)
Опубликована: Янв. 1, 2025
Accurate
detection
of
gastrointestinal
(GI)
diseases
is
crucial
due
to
their
high
prevalence.
Screening
often
inefficient
with
existing
methods,
and
the
complexity
medical
images
challenges
single‐model
approaches.
Leveraging
diverse
model
features
can
improve
accuracy
simplify
detection.
In
this
study,
we
introduce
a
novel
deep
learning
tailored
for
diagnosis
GI
through
analysis
endoscopy
images.
This
innovative
model,
named
MultiResFF‐Net,
employs
multilevel
residual
block‐based
feature
fusion
network.
The
key
strategy
involves
integration
from
truncated
DenseNet121
MobileNet
architectures.
not
only
optimizes
model’s
diagnostic
performance
but
also
strategically
minimizes
computational
demands,
making
MultiResFF‐Net
valuable
tool
efficient
accurate
disease
in
A
pivotal
component
enhancing
introduction
Modified
MultiRes‐Block
(MMRes‐Block)
Convolutional
Block
Attention
Module
(CBAM).
MMRes‐Block,
customized
component,
optimally
handles
fused
at
endpoint
both
models,
fostering
richer
sets
without
escalating
parameters.
Simultaneously,
CBAM
ensures
dynamic
recalibration
maps,
emphasizing
relevant
channels
spatial
locations.
dual
incorporation
significantly
reduces
overfitting,
augments
precision,
refines
extraction
process.
Extensive
evaluations
on
three
datasets—endoscopic
images,
GastroVision
data,
histopathological
images—demonstrate
exceptional
99.37%,
97.47%,
99.80%,
respectively.
Notably,
achieves
superior
efficiency,
requiring
2.22
MFLOPS
0.47
million
parameters,
outperforming
state‐of‐the‐art
models
cost‐effectiveness.
These
results
establish
as
robust
practical
Diagnostics,
Год журнала:
2024,
Номер
14(6), С. 591 - 591
Опубликована: Март 11, 2024
While
the
adoption
of
wireless
capsule
endoscopy
(WCE)
has
been
steadily
increasing,
its
primary
application
remains
limited
to
observing
small
intestine,
with
relatively
less
in
upper
gastrointestinal
tract.
However,
there
is
a
growing
anticipation
that
advancements
technology
will
lead
significant
increase
examinations.
This
study
addresses
underexplored
domain
landmark
identification
within
tract
using
WCE,
acknowledging
research
and
public
datasets
available
this
emerging
field.
To
contribute
future
development
WCE
for
gastroscopy,
novel
approach
proposed.
Utilizing
color
transfer
techniques,
simulated
dataset
tailored
created.
Using
Euclidean
distance
measurements,
similarity
between
color-transferred
authentic
images
verified.
Pioneering
exploration
anatomical
classification
data,
integrates
evaluation
image
preprocessing
deep
learning
specifically
employing
DenseNet169
model.
As
result,
utilizing
achieves
an
accuracy
exceeding
90%
Furthermore,
sharpen
detail
filters
demonstrates
from
91.32%
94.06%.
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi,
Год журнала:
2024,
Номер
27(1), С. 121 - 132
Опубликована: Март 3, 2024
Derin
öğrenme
(DL)
tekniklerindeki
son
gelişmeler,
tıbbi
görüntüler
kullanılarak
gastrointestinal
(GI)
hastalıkların
sınıflandırılmasını
otomatikleştirmek
için
umut
verici
bir
potansiyel
göstermektedir.
Zamanında
ve
kesin
teşhis,
tedavi
etkinliğini
önemli
ölçüde
etkilemektedir.
Bu
araştırma,
GI
hastalıklarını
tanımlamak
yeni
DL
tabanlı
modeli
tanıtmaktadır.
model,
önceden
eğitilmiş
ağ
mimarilerinin
ara
katmanlarından
elde
edilen
öznitelikleri
birleştirerek
sınıflandırma
işlemini
gerçekleştirmektedir.
Öznitelik
entegrasyonuna
dayalı
evrişimsel
sinir
ağı
(ESA)
olarak
adlandırılan
bu
modelde,
endoskopik
görüntüleri
sınıflandırmak
yüksek
düşük
seviyeli
birleştirilerek
nihai
öznitelik
haritası
edilmektedir.
Daha
sonra
kullanılmaktadır.
Kvasirv2
veri
seti
yapılan
deneysel
analizler
sonucunda,
önerilen
model
ile
başarılı
performans
edilmiştir.
Özellikle,
DenseNet201
modelinin
katmanlarındaki
özelliklerin
birleştirilmesi,
sırasıyla
%94.25,
%94.28,
%94.24
doğruluk,
kesinlik,
duyarlılık
F1
puanı
sonuçlanmıştır.
Diğer
ESA
modellerle
çalışmalarla
karşılaştırmalı
analizler,
modelin
üstünlüğünü
ortaya
koymuş
doğruluğu
%94.25'e
yükseltmiştir.
Bu,
görüntülerden
hastalık
tespitinde
gelişmiş
DenseNet201'in
özelliklerden
yararlanma
potansiyelinin
altını
çizmektedir.