OUTPUT POWER ANALYSIS OF LOW CONCENTRATED SOLAR CELLS WITH FRESNEL LENS OPTICS DOI
Dinara Almen, Ainur Kapparova,

Evan Yershov

и другие.

Optik, Год журнала: 2024, Номер unknown, С. 172088 - 172088

Опубликована: Окт. 1, 2024

Язык: Английский

Ac/dc conductivity and ML-based evaluation of electric characteristics of methylene blue solution DOI

Chandan R. Vaja,

V. A. Rana, Sanketsinh Thakor

и другие.

Journal of Molecular Liquids, Год журнала: 2024, Номер 410, С. 125676 - 125676

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

11

Experimental investigation and neural network development for modeling tensile properties of polymethyl methacrylate (PMMA) filament material DOI

John D. Kechagias,

Stephanos P. Zaoutsos,

Nikolaos A. Fountas

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

10

Solar energy prediction through machine learning models: A comparative analysis of regressor algorithms DOI Creative Commons
Hoang Sy Nguyen Hoang Sy Nguyen,

Quoc-Cuong Tran,

Canh Tung Ngo

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(1), С. e0315955 - e0315955

Опубликована: Янв. 2, 2025

Solar energy generated from photovoltaic panel is an important source that brings many benefits to people and the environment. This a growing trend globally plays increasingly role in future of industry. However, it intermittent nature potential for distributed system use require accurate forecasting balance supply demand, optimize storage, manage grid stability. In this study, 5 machine learning models were used including: Gradient Boosting Regressor (GB), XGB (XGBoost), K-neighbors (KNN), LGBM (LightGBM), CatBoost (CatBoost). Leveraging dataset 21045 samples, factors like Humidity, Ambient temperature, Wind speed, Visibility, Cloud ceiling Pressure serve as inputs constructing these solar energy. Model accuracy meticulously assessed juxtaposed using metrics such coefficient determination (R 2 ), Root Mean Square Error (RMSE), Absolute (MAE). The results show model emerges frontrunner predicting energy, with training values R value 0.608, RMSE 4.478 W MAE 3.367 testing 0.46, 4.748 3.583 W. SHAP analysis reveal ambient temperature humidity have greatest influences on panel.

Язык: Английский

Процитировано

2

Machine learning-driven analysis of dielectric response in polymethyl methacrylate nanocomposites reinforced with multi-walled carbon nanotubes DOI
Prince Jain, Sanketsinh Thakor, Anand Joshi

и другие.

Journal of Materials Science Materials in Electronics, Год журнала: 2024, Номер 35(20)

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

8

Deep-learning approach for developing bilayered electromagnetic interference shielding composite aerogels based on multimodal data fusion neural networks DOI

Chenglei He,

Liya Yu, Yun Jiang

и другие.

Journal of Colloid and Interface Science, Год журнала: 2025, Номер 688, С. 79 - 92

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

1

Dielectric properties of green synthesized Ag-doped ZnO NPs in epoxy resin polymer nanocomposites DOI

Jaivik Pathak,

Unnati Joshi, Prince Jain

и другие.

Journal of Polymer Research, Год журнала: 2025, Номер 32(4)

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

1

Dielectric Characterization and Machine Learning-Based Predictions in Polymer Composites with Mixed Nanoparticles DOI

Parvathanani Rajendra Kumar,

B Madhav Rao,

Chaitanya Kishore Reddy Maddireddy

и другие.

Journal of Macromolecular Science Part B, Год журнала: 2024, Номер unknown, С. 1 - 15

Опубликована: Июнь 28, 2024

Our research described in this manuscript investigated the dielectric properties and structural characteristics of Bisphenol-A epoxy resin composites infused with various concentrations (5 wt.%, 10 15 wt.%) hybrid nanofillers, namely alumina (Al2O3) zinc oxide (ZnO). Ultrasonic dispersion was utilized to integrate nanofillers into matrix. Structural were assessed using X-ray diffraction (XRD), which confirmed presence Al2O3 ZnO nanoparticles within Dielectric measured over a frequency range 104 Hz 2 MHz. The results provide new insights polarization mechanisms these composites, highlighting their potential for enhanced performance high-frequency applications. To further understand predict properties, CatBoost LightGBM regression models employed constant (ε'), loss tangent (tan δ), AC conductivity (σac) composites. demonstrated strong predictive accuracy, metrics, including Mean Absolute Error (MAE), Root Square (RMSE), R-squared (R2), indicating robustness accuracy predicting study's findings underscore significant

Язык: Английский

Процитировано

6

Experimental Measurement of the Near Electric Emission from LED Driver as function of Power Variation and Lighting Mode DOI
Abdelhakim Zeghoudi, Abdelber Bendaoud,

Farid Benhamida

и другие.

Optik, Год журнала: 2025, Номер unknown, С. 172347 - 172347

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Characteristics of nanoepoxy composite through structural, thermal and machine learning-enhanced dielectric analysis DOI
Sanketsinh Thakor, Prince Jain, Anand Joshi

и другие.

Journal of Polymer Research, Год журнала: 2025, Номер 32(5)

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Machine learning-assisted prediction and optimization of dielectric properties in epoxy resin nanocomposites DOI
Sanketsinh Thakor, Anand Joshi,

Hetvi Patel

и другие.

Macromolecular Research, Год журнала: 2025, Номер unknown

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

0