A comprehensive survey of Crow Search Algorithm and its applications DOI
Yassine Meraihi, Asma Benmessaoud Gabis, Amar Ramdane-Chérif

и другие.

Artificial Intelligence Review, Год журнала: 2020, Номер 54(4), С. 2669 - 2716

Опубликована: Сен. 28, 2020

Язык: Английский

An improved grey wolf optimizer for solving engineering problems DOI
Mohammad H. Nadimi-Shahraki, Shokooh Taghian, Seyedali Mirjalili

и другие.

Expert Systems with Applications, Год журнала: 2020, Номер 166, С. 113917 - 113917

Опубликована: Сен. 16, 2020

Язык: Английский

Процитировано

843

Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization DOI
Hoda Zamani, Mohammad H. Nadimi-Shahraki, Amir H. Gandomi

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 392, С. 114616 - 114616

Опубликована: Фев. 12, 2022

Язык: Английский

Процитировано

232

MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems DOI
Mohammad H. Nadimi-Shahraki, Shokooh Taghian, Seyedali Mirjalili

и другие.

Applied Soft Computing, Год журнала: 2020, Номер 97, С. 106761 - 106761

Опубликована: Сен. 28, 2020

Язык: Английский

Процитировано

215

Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study DOI
Mohammad H. Nadimi-Shahraki, Hoda Zamani, Seyedali Mirjalili

и другие.

Computers in Biology and Medicine, Год журнала: 2022, Номер 148, С. 105858 - 105858

Опубликована: Июль 16, 2022

Язык: Английский

Процитировано

212

QANA: Quantum-based avian navigation optimizer algorithm DOI
Hoda Zamani, Mohammad H. Nadimi-Shahraki, Amir H. Gandomi

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2021, Номер 104, С. 104314 - 104314

Опубликована: Июнь 21, 2021

Язык: Английский

Процитировано

190

Crow Search Algorithm: Theory, Recent Advances, and Applications DOI Creative Commons
Abdelazim G. Hussien, Mohammed A. Amin, Mingjing Wang

и другие.

IEEE Access, Год журнала: 2020, Номер 8, С. 173548 - 173565

Опубликована: Янв. 1, 2020

In this article, a comprehensive overview of the Crow Search Algorithm (CSA) is introduced with detailed discussions, which intended to keep researchers interested in swarm intelligence algorithms and optimization problems. CSA new algorithm recently developed, simulates crow behavior storing excess food retrieving it when needed. theory, searcher, surrounding environment search space, randomly location feasible solution. Among all locations, where most stored considered be global optimal solution, objective function amount food. By simulating intelligent crows, tries find solutions various It has gained considerable interest worldwide since its advantages like simple implementation, few numbers parameters, flexibility, etc. This survey introduces variant CSA, including hybrid, modified, multi-objective versions. Furthermore, based on analyzed papers published literature by some publishers such as IEEE, Elsevier, Springer, application scenarios power, computer science, machine learning, civil engineering have also been reviewed. Finally, disadvantages discussed conducting comparative experiments other similar peers.

Язык: Английский

Процитировано

189

Social Network Search for Solving Engineering Optimization Problems DOI Creative Commons
Hadi Bayzidi, Siamak Talatahari,

Meysam Saraee

и другие.

Computational Intelligence and Neuroscience, Год журнала: 2021, Номер 2021(1)

Опубликована: Янв. 1, 2021

In this paper, a new metaheuristic optimization algorithm, called social network search (SNS), is employed for solving mixed continuous/discrete engineering problems. The SNS algorithm mimics the user’s efforts to gain more popularity by modeling decision moods in expressing their opinions. Four moods, including imitation, conversation, disputation, and innovation, are real‐world behaviors of users networks. These used as operators that model how affected motivated share views. was verified with 14 benchmark problems one real application field remote sensing. performance proposed method compared various algorithms show its effectiveness over other well‐known optimizers terms computational cost accuracy. most cases, optimal solutions achieved better than best solution obtained existing methods.

Язык: Английский

Процитировано

174

Quantum-inspired metaheuristic algorithms: comprehensive survey and classification DOI
Farhad Soleimanian Gharehchopogh

Artificial Intelligence Review, Год журнала: 2022, Номер 56(6), С. 5479 - 5543

Опубликована: Ноя. 2, 2022

Язык: Английский

Процитировано

138

Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems DOI

R. Sowmya,

M. Premkumar, Pradeep Jangir

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107532 - 107532

Опубликована: Дек. 12, 2023

Язык: Английский

Процитировано

136

A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations DOI Open Access
Mohammad H. Nadimi-Shahraki, Hoda Zamani, Zahra Asghari Varzaneh

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4113 - 4159

Опубликована: Май 27, 2023

Язык: Английский

Процитировано

125