Artificial Intelligence Review, Год журнала: 2020, Номер 54(4), С. 2669 - 2716
Опубликована: Сен. 28, 2020
Язык: Английский
Artificial Intelligence Review, Год журнала: 2020, Номер 54(4), С. 2669 - 2716
Опубликована: Сен. 28, 2020
Язык: Английский
Expert Systems with Applications, Год журнала: 2020, Номер 166, С. 113917 - 113917
Опубликована: Сен. 16, 2020
Язык: Английский
Процитировано
843Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 392, С. 114616 - 114616
Опубликована: Фев. 12, 2022
Язык: Английский
Процитировано
232Applied Soft Computing, Год журнала: 2020, Номер 97, С. 106761 - 106761
Опубликована: Сен. 28, 2020
Язык: Английский
Процитировано
215Computers in Biology and Medicine, Год журнала: 2022, Номер 148, С. 105858 - 105858
Опубликована: Июль 16, 2022
Язык: Английский
Процитировано
212Engineering Applications of Artificial Intelligence, Год журнала: 2021, Номер 104, С. 104314 - 104314
Опубликована: Июнь 21, 2021
Язык: Английский
Процитировано
190IEEE Access, Год журнала: 2020, Номер 8, С. 173548 - 173565
Опубликована: Янв. 1, 2020
In this article, a comprehensive overview of the Crow Search Algorithm (CSA) is introduced with detailed discussions, which intended to keep researchers interested in swarm intelligence algorithms and optimization problems. CSA new algorithm recently developed, simulates crow behavior storing excess food retrieving it when needed. theory, searcher, surrounding environment search space, randomly location feasible solution. Among all locations, where most stored considered be global optimal solution, objective function amount food. By simulating intelligent crows, tries find solutions various It has gained considerable interest worldwide since its advantages like simple implementation, few numbers parameters, flexibility, etc. This survey introduces variant CSA, including hybrid, modified, multi-objective versions. Furthermore, based on analyzed papers published literature by some publishers such as IEEE, Elsevier, Springer, application scenarios power, computer science, machine learning, civil engineering have also been reviewed. Finally, disadvantages discussed conducting comparative experiments other similar peers.
Язык: Английский
Процитировано
189Computational Intelligence and Neuroscience, Год журнала: 2021, Номер 2021(1)
Опубликована: Янв. 1, 2021
In this paper, a new metaheuristic optimization algorithm, called social network search (SNS), is employed for solving mixed continuous/discrete engineering problems. The SNS algorithm mimics the user’s efforts to gain more popularity by modeling decision moods in expressing their opinions. Four moods, including imitation, conversation, disputation, and innovation, are real‐world behaviors of users networks. These used as operators that model how affected motivated share views. was verified with 14 benchmark problems one real application field remote sensing. performance proposed method compared various algorithms show its effectiveness over other well‐known optimizers terms computational cost accuracy. most cases, optimal solutions achieved better than best solution obtained existing methods.
Язык: Английский
Процитировано
174Artificial Intelligence Review, Год журнала: 2022, Номер 56(6), С. 5479 - 5543
Опубликована: Ноя. 2, 2022
Язык: Английский
Процитировано
138Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107532 - 107532
Опубликована: Дек. 12, 2023
Язык: Английский
Процитировано
136Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4113 - 4159
Опубликована: Май 27, 2023
Язык: Английский
Процитировано
125