Computers & Geosciences, Год журнала: 2023, Номер 180, С. 105455 - 105455
Опубликована: Сен. 12, 2023
Язык: Английский
Computers & Geosciences, Год журнала: 2023, Номер 180, С. 105455 - 105455
Опубликована: Сен. 12, 2023
Язык: Английский
Nature Communications, Год журнала: 2023, Номер 14(1)
Опубликована: Фев. 14, 2023
Abstract Proton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity water, suffer acute liquid water challenges. Accurate modelling is inherently challenging due the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging capabilities are limiting simulations small areas (<1 mm 2 ) or simplified architectures. Herein, an advancement in achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, direct multi-phase simulation. The resulting image most resolved domain (16 with 700 nm voxel resolution) largest flow simulation of a cell. This generalisable approach unveils multi-scale clustering transport mechanisms over large dry flooded gas diffusion layer fields, paving way for next generation proton cells optimised structures wettabilities.
Язык: Английский
Процитировано
87npj Materials Sustainability, Год журнала: 2025, Номер 3(1)
Опубликована: Янв. 7, 2025
Exploring sustainable alternative constituents is a key pathway to carbon-neutralization of concrete, but often limited insufficient understandings how they interact with conventional concrete components at microscale. In this paper we reviewed the most cutting-edge microprobes used for such purposes, from both laboratory setup synchrotron radiation-based techniques. We also provided practical guidelines on sample preparation and result analysis, which could benefit researchers who plan adopt these methods
Язык: Английский
Процитировано
3Transport in Porous Media, Год журнала: 2021, Номер 140(1), С. 215 - 240
Опубликована: Май 26, 2021
Язык: Английский
Процитировано
71Journal of Petroleum Science and Engineering, Год журнала: 2022, Номер 216, С. 110734 - 110734
Опубликована: Июнь 13, 2022
Язык: Английский
Процитировано
56Environmental Earth Sciences, Год журнала: 2022, Номер 81(3)
Опубликована: Янв. 25, 2022
Abstract Image segmentation remains the most critical step in Digital Rock Physics (DRP) workflows, affecting analysis of physical rock properties. Conventional techniques struggle with numerous image artifacts and user bias, which lead to considerable uncertainty. This study evaluates advantages using random forest (RF) algorithm for fractured rocks. The quality is discussed compared two conventional processing methods (thresholding-based watershed algorithm) an encoder–decoder network form convolutional neural networks (CNNs). segmented images RF method were used as ground truth CNN training. samples are acquired by X-ray computed tomography scanning (XCT). skeletonized 3D calculated, providing information about mean mechanical aperture roughness. porosity, permeability, flow fields, preferred paths analyzed DRP approach. Moreover, breakthrough curves obtained from tracer injection experiments evaluate each method. results show that overestimate fracture aperture. Both machine learning approaches promising handle all complexities without any prior CT-image filtering. However, implementation has superior inherent over CNN. resource-saving (e.g., quickly trained), does not need extensive training dataset, can provide uncertainty a measure evaluating quality. variation properties highlights importance choosing appropriate
Язык: Английский
Процитировано
47Journal of Natural Gas Science and Engineering, Год журнала: 2022, Номер 99, С. 104411 - 104411
Опубликована: Янв. 6, 2022
Язык: Английский
Процитировано
46ADVANCES IN GEO-ENERGY RESEARCH, Год журнала: 2023, Номер 8(1), С. 5 - 18
Опубликована: Фев. 2, 2023
Digital rock technology is becoming essential in reservoir engineering and petrophysics. Three-dimensional digital reconstruction, image resolution enhancement, segmentation, parameters prediction are all crucial steps enabling the overall analysis of rocks to overcome shortcomings limitations traditional methods. Artificial intelligence technology, which has started play a significant role many different fields, may provide new direction for development technology. This work presents systematic review deep learning methods that being applied tasks within analysis, including reconstruction rocks, high-resolution acquisition, grayscale parameter prediction. The results these applications prove state-of-the-art can help advance approach scientific knowledge field rocks. also discusses future research developments on application Cited as: Li, X., B., Liu, F., T., Nie, X. Advances Geo-Energy Research, 2023, 8(1): 5-18. https://doi.org/10.46690/ager.2023.04.02
Язык: Английский
Процитировано
41Energy & Fuels, Год журнала: 2023, Номер 37(4), С. 2475 - 2497
Опубликована: Янв. 25, 2023
The complex and multiscale nature of shale gas transport imposes new challenges to the already well-developed techniques for conventional reservoirs, especially digital core analysis. Multiscale complicated pore systems distinctive properties limit most reconstruction methods not applicable. High-precision imaging experiments play a key role in characterization structures mineral components. While exhilarating breakthroughs physical experimental hybrid superposition have made significant achievements rock reconstruction, rapidly evolving deep learning also present promising option. Benefiting from techniques, pore-scale flow can be directly simulated based on or indirectly modeled using network model. It is precise realistic investigate at scale considering desorption, surface diffusion, slippage nanopores. In this paper, we reviewed recent advances off-mentioned processes presented hand research field.
Язык: Английский
Процитировано
37Marine and Petroleum Geology, Год журнала: 2023, Номер 151, С. 106206 - 106206
Опубликована: Фев. 28, 2023
Язык: Английский
Процитировано
37Fuel, Год журнала: 2024, Номер 366, С. 131414 - 131414
Опубликована: Март 7, 2024
Язык: Английский
Процитировано
18