Mühendislik Bilimleri ve Araştırmaları Dergisi,
Год журнала:
2024,
Номер
6(1), С. 53 - 64
Опубликована: Апрель 27, 2024
Bu
makale,
değiştirilmiş
karınca
kolonisi
optimizasyonu
(DEKKO)
algoritmasının
redüktör
mühendislik
probleminin
çözümüne
yeniden
odaklanılmasına
dayanmaktadır.
DEKKO,
Karınca
Kolonisi
Algoritmasının
(KKO)
avantajlı
özelliklerinin
birleştirilmesiyle
oluşturulmuştur.DEKKO
ile
KKO
’da
değişiklik
yapılarak
daha
önceden
literatürde
farklı
tekniklerle
yapılan
çalışmalardan
iyi
sonuçların
elde
edilmesi
amaçlanmıştır.
Algoritma,
en
etkili
sonuç
edilene
kadar
20
kez
çalıştırılmıştır.
İterasyon
sayısı
14
olmak
üzere
performans
sonucu
olarak
3105,8779
edilmiştir.
işlem,
algoritmada
100
adet
kullanılarak
66,81saniyede
tamamlanmıştır.
Literatürdeki
sonuçlarla
karşılaştırıldığında
literatür
sonuçları
arasında
olduğu
ve
başarılı
bir
çözümle
sonuçlandığı
gözlemlenmiştir.
Kullanıcılar,
DEKKO
algoritmasını
kullanarak
simülasyon
yoluyla
tasarımı
ön
üretim
hakkında
kolaylıkla
bilgi
edinebilmektedir.
Böylelikle
maliyet
zaman
tasarrufun
açısından
kullanıcılara
katkıda
bulunulması
IET Renewable Power Generation,
Год журнала:
2024,
Номер
18(14), С. 2209 - 2237
Опубликована: Фев. 24, 2024
Abstract
In
the
pursuit
of
enhancing
efficiency
solar
cells,
accurate
estimation
unspecified
parameters
in
photovoltaic
(PV)
cell
model
is
imperative.
An
advanced
salp
swarm
algorithm
called
Super‐Evolutionary
Nelder‐Mead
Salp
Swarm
Algorithm
(SENMSSA)
proposed
to
achieve
this
objective.
The
SENMSSA
addresses
limitations
SSA
by
incorporating
a
super‐evolutionary
mechanism
based
on
Gaussian‐Cauchy
mutation
and
vertical
horizontal
crossover
mechanism.
This
enhances
both
global
optimization
capabilities
local
search
performance
convergence
speed
algorithm.
It
enables
secondary
refinement
optimum,
unlocking
untapped
potential
solution
space
near
optimum
elevating
algorithm's
precision
exploitation
higher
levels.
simplex
method
further
introduced
enhance
accuracy.
versatile
that
improves
iteratively
adjusting
geometric
shape
(simplex)
points.
operates
without
needing
derivatives,
making
it
suitable
for
non‐smooth
or
complex
objective
functions.
To
assess
efficacy
SENMSSA,
comparative
analysis
conducted
against
other
available
algorithms,
namely
SSA,
IWOA,
SCADE,
LWOA,
CBA,
RCBA,
using
CEC2014
benchmark
function
set.
Subsequently,
was
employed
determine
unknown
PV
under
fixed
conditions
three
different
diode
models.
Additionally,
utilized
estimate
commercially
models
(ST40,
SM55,
KC200GT)
varying
conditions.
experimental
results
indicate
study
displays
remarkably
competitive
all
test
cases
compared
algorithms.
As
such,
we
consider
constitutes
reliable
efficient
challenge
parameter
estimation.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
Год журнала:
2024,
Номер
32, С. 672 - 683
Опубликована: Янв. 1, 2024
Rapid
serial
visual
presentation
(RSVP)-based
brain-computer
interface
(BCI)
is
a
promising
target
detection
technique
by
using
electroencephalogram
(EEG)
signals.
However,
existing
deep
learning
approaches
seldom
considered
dependencies
of
multi-scale
temporal
features
and
discriminative
multi-view
spectral
simultaneously,
which
limits
the
representation
ability
model
undermine
EEG
classification
performance.
In
addition,
recent
transfer
learning-based
methods
generally
failed
to
obtain
transferable
cross-subject
invariant
representations
commonly
ignore
individual-specific
information,
leading
poor
response
these
limitations,
we
propose
cross-scale
Transformer
triple-view
attention
based
domain-rectified
(CST-TVA-DRTL)
for
RSVP
classification.
Specially,
first
develop
(CST)
extract
exploit
different
scales
features.
Then,
(TVA)
designed
capture
from
triple
views
multi-channel
time-frequency
images.
Finally,
(DRTL)
framework
proposed
simultaneously
domain-invariant
untransferable
domain-specific
representations,
then
utilize
information
rectify
adapt
data.
Experimental
results
on
two
public
datasets
suggests
that
our
CST-TVA-DRTL
outperforms
state-of-the-art
in
task.
The
source
code
publicly
available
https://github.com/ljbuaa/CST_TVA_DRTL.
iScience,
Год журнала:
2024,
Номер
27(8), С. 110561 - 110561
Опубликована: Июль 22, 2024
Rime
optimization
algorithm
(RIME)
encounters
issues
such
as
an
imbalance
between
exploitation
and
exploration,
susceptibility
to
local
optima,
low
convergence
accuracy
when
handling
problems.
This
paper
introduces
a
variant
of
RIME
called
IRIME
address
these
drawbacks.
integrates
the
soft
besiege
(SB)
composite
mutation
strategy
(CMS)
restart
(RS).
To
comprehensively
validate
IRIME's
performance,
IEEE
CEC
2017
benchmark
tests
were
conducted,
comparing
it
against
many
advanced
algorithms.
The
results
indicate
that
performance
is
best.
In
addition,
applying
in
four
engineering
problems
reflects
solving
practical
Finally,
proposes
binary
version,
bIRIME,
can
be
applied
feature
selection
bIRIMR
performs
well
on
12
low-dimensional
datasets
24
high-dimensional
datasets.
It
outperforms
other
algorithms
terms
number
subsets
classification
accuracy.
conclusion,
bIRIME
has
great
potential
selection.
Journal of Computational Design and Engineering,
Год журнала:
2025,
Номер
unknown
Опубликована: Янв. 14, 2025
Abstract
Multi-threshold
image
segmentation
(MTIS)
is
a
crucial
technology
in
processing,
characterized
by
simplicity
and
efficiency,
the
key
lies
selection
of
thresholds.
However,
method's
time
complexity
will
grow
exponentially
with
number
To
solve
this
problem,
an
improved
arithmetic
optimization
algorithm
(ETAOA)
proposed
paper,
optimizer
for
optimizing
process
merging
appropriate
Specifically,
two
strategies
are
introduced
to
optimize
optimal
threshold
process:
elite
evolutionary
strategy
(EES)
tracking
(ETS).
First,
verify
performance
ETAOA,
mechanism
comparison
experiments,
scalability
tests,
experiments
nine
state-of-the-art
peers
executed
based
on
benchmark
functions
CEC2014
CEC2022.
After
that,
demonstrate
feasibility
ETAOA
domain,
were
performed
using
ten
advanced
methods
skin
cancer
dermatoscopy
datasets
under
low
high
thresholds,
respectively.
The
above
experimental
results
show
that
performs
outstanding
compared
functions.
Moreover,
domain
has
superior
conditions.