Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112500 - 112500
Опубликована: Ноя. 1, 2024
Язык: Английский
Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112500 - 112500
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Imaging, Год журнала: 2024, Номер 10(8), С. 176 - 176
Опубликована: Июль 23, 2024
This paper addresses the significant problem of identifying relevant background and contextual literature related to deep learning (DL) as an evolving technology in order provide a comprehensive analysis application DL specific pneumonia detection via chest X-ray (CXR) imaging, which is most common cost-effective imaging technique available worldwide for diagnosis. particular key period associated with COVID-19, 2020–2023, explain, analyze, systematically evaluate limitations approaches determine their relative levels effectiveness. The context applied both aid automated substitute existing expert radiography professionals, who often have limited availability, elaborated detail. rationale undertaken research provided, along justification resources adopted relevance. explanatory text subsequent analyses are intended sufficient detail being addressed, solutions, these, ranging from more general. Indeed, our evaluation agree generally held view that use transformers, specifically, vision transformers (ViTs), promising obtaining further effective results area using CXR images. However, ViTs require extensive address several limitations, specifically following: biased datasets, data code ease model can be explained, systematic methods accurate comparison, notion class imbalance possibility adversarial attacks, latter remains fundamental research.
Язык: Английский
Процитировано
8Опубликована: Янв. 1, 2025
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112762 - 112762
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 129878 - 129878
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 108, С. 107909 - 107909
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0Journal of Imaging, Год журнала: 2024, Номер 10(10), С. 250 - 250
Опубликована: Окт. 13, 2024
The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. early diagnosis COVID-19 patients emerged as a pivotal strategy in mitigating the disease. Automated using Chest X-ray (CXR) imaging significant potential for facilitating large-scale screening epidemic control efforts. This paper introduces novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) accurate detection. employed datasets each comprised 15,000 images. We addressed both binary (Normal vs. Abnormal) multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, InceptionResNet-V2) As result, Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, 97.89% F1-score classification, while multi-classification it yielded 87.73% 90.20% an 87.49% F1-score. Moreover, other utilized models, such competitive performance compared with many recent works.
Язык: Английский
Процитировано
3Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112500 - 112500
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
0