Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index DOI
Reza Esmaili,

Seyedeh Atefeh Karipour

Natural Hazards, Год журнала: 2024, Номер 120(9), С. 8619 - 8638

Опубликована: Апрель 21, 2024

Язык: Английский

Evaluating the effects of climate and land use change on the future flood susceptibility in the central region of Vietnam by integrating land change modeler, machine learning methods DOI
Huu Duy Nguyen, Dinh Kha Dang, Quoc‐Huy Nguyen

и другие.

Geocarto International, Год журнала: 2022, Номер 37(26), С. 12810 - 12845

Опубликована: Апрель 27, 2022

The crucial importance of land cover and use changes climate for worldwide sustainability results from their negative effects on flood risk. In a watershed, particularly important research question concerning the relationship between change risk is subject controversy in literature. This study aims to assess susceptibility watershed Nhat Le–Kien Giang, Vietnam using machine learning Land Change Modeler. show that Social Ski Driver Optimization (SSD), Fruit Fly (FFO), Sailfish (SFO), Particle Swarm (PSO) successfully improve Support Vector Machine (SVM) model's performance, with value Area Under Receiver Operating Characteristic curve (AUC) > 0.96. Among them, SVM-FFO model was better AUC 0.984, followed by SVM-SFO (AUC = 0.983), SVM-SSD 0.98), SVM-PSO 0.97), respectively. addition, areas high very area increased about 30 km2 2020 2050 model. Our underline consequences unplanned development. Thus, applying theoretical framework this study, decision makers can take sound more planning measures, such as avoiding construction often affected floods, etc. Although studied Central Coast province, be applied other rapidly developing flood-prone provinces Vietnam.

Язык: Английский

Процитировано

22

A fuzzy-based flood warning system using 19-year remote sensing time series data in the Google Earth Engine cloud platform DOI
Amirhossein Rostami, Mehdi Akhoondzadeh, Meisam Amani

и другие.

Advances in Space Research, Год журнала: 2022, Номер 70(5), С. 1406 - 1428

Опубликована: Июнь 10, 2022

Язык: Английский

Процитировано

22

Examining the role of class imbalance handling strategies in predicting earthquake-induced landslide-prone regions DOI
Quoc Bao Pham, Ömer Ekmekcioğlu, Sk Ajim Ali

и другие.

Applied Soft Computing, Год журнала: 2023, Номер 143, С. 110429 - 110429

Опубликована: Май 19, 2023

Язык: Английский

Процитировано

13

Prediction of flood routing results in the Central Anatolian region of Türkiye with various machine learning models DOI
Okan Mert Katipoğlu, Metin Sarıgöl

Stochastic Environmental Research and Risk Assessment, Год журнала: 2023, Номер 37(6), С. 2205 - 2224

Опубликована: Фев. 13, 2023

Язык: Английский

Процитировано

10

Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index DOI
Reza Esmaili,

Seyedeh Atefeh Karipour

Natural Hazards, Год журнала: 2024, Номер 120(9), С. 8619 - 8638

Опубликована: Апрель 21, 2024

Язык: Английский

Процитировано

4