Dynamic analysis of soil erosion and sediment yield engrossment involving rainfall, land use and land cover impacts using GIS-based RUSLE & SDR modeling: southern western Ghats River Basin of Kerala, India DOI
B. Upendra,

Ciba Manohar,

K. Jesuraja

и другие.

Geosciences Journal, Год журнала: 2024, Номер 28(6), С. 959 - 980

Опубликована: Окт. 10, 2024

Язык: Английский

Modelling of soil erosion susceptibility incorporating sediment connectivity and export at landscape scale using integrated machine learning, InVEST-SDR and Fragstats DOI
Raj Kumar Bhattacharya, Nilanjana Das Chatterjee, Kousik Das

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 353, С. 120164 - 120164

Опубликована: Янв. 31, 2024

Язык: Английский

Процитировано

13

A geospatial approach-based assessment of soil erosion impacts on the dams silting in the semi-arid region DOI Creative Commons
Omar Djoukbala, Salim Djerbouai, Saeed Alqadhi

и другие.

Geomatics Natural Hazards and Risk, Год журнала: 2024, Номер 15(1)

Опубликована: Июль 9, 2024

Soil erosion significantly impacts dam functionality by leading to reservoir siltation, reducing capacity, and heightening flood risks. This study aims map soil within a Geographic Information Systems (GIS) framework estimate the siltation of K'sob compare these estimates with bathymetric observations. Focused on one Hodna basin's sub-basins, watershed (1477 km2), assessment utilizes Revised Universal Loss Equation (RUSLE) integrated GIS remote sensing data predict spatial distribution erosion. Remote were pivotal in updating land cover parameters critical for RUSLE, enhancing precision our predictions. Our results indicate an average annual rate 7.83 t/ha, variations ranging from 0 224 t/ha/year. With typical relative error about 13% predictions, figures confirm robustness methodology. These insights are crucial crafting mitigation strategies areas facing high extreme loss will assist governmental agencies prioritizing actions formulating effective management policies. Future studies should explore integration real-time advanced modeling techniques further refine predictions expand their applicability similar environmental assessments.

Язык: Английский

Процитировано

6

Soil erosion and sediment yield in Africa: processes and factors DOI
Abdelali Gourfi, Matthias Vanmaercke, Jean Poesen

и другие.

Journal of African Earth Sciences, Год журнала: 2025, Номер unknown, С. 105622 - 105622

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Integrating principal component weighted water quality index (PCWQI) model with GIS for evaluation groundwater quality in Gangetic West Bengal, India DOI
Jadab Chandra Halder

Environmental Pollution, Год журнала: 2025, Номер unknown, С. 126167 - 126167

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Sediment delivery ratio modeling for arid and small watersheds of central desert of Iran DOI

Hossein Etemadi,

Shima Nikoo,

Seyed Ali Asghar Hashemi

и другие.

Modeling Earth Systems and Environment, Год журнала: 2025, Номер 11(3)

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0

GIS-based sediment yield estimation in lower Betwa river basin, India using integrated RUSLE-SDR approach DOI

Fatimah Fatimah,

Kakoli Gogoi, Saif Said

и другие.

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0

Assessment of soil erosion in southern Tunisia using AHP-GIS modeling DOI
Hayet Mnasri, Adélia Nunes,

Houda Sahnoun

и другие.

Euro-Mediterranean Journal for Environmental Integration, Год журнала: 2023, Номер 9(1), С. 223 - 234

Опубликована: Ноя. 8, 2023

Язык: Английский

Процитировано

9

Soil and organic carbon losses by water erosion in coffee-growing areas in southern Minas Gerais, Brazil DOI Creative Commons
Derielsen Brandão Santana, Guilherme da Silva Rios,

Guilherme Henrique Expedito LENSE

и другие.

TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, Год журнала: 2024, Номер 48(3), С. 317 - 331

Опубликована: Июнь 6, 2024

Organic carbon performs essential functions in soils. Soils act as sources or sinks of atmospheric organic carbon. Agricultural management influences soil carbon, impacting climate change. One the crops most vulnerable to change is coffee. Brazil world's largest coffee producer, with a predominance under conventional system, sloping terrain and absence conservationist practices. The practices results an increase loss rates due water emissions, well reduction production. This paper aimed estimate losses by RUSLE farms southern Minas Gerais, southeastern Brazil. Data were obtained from fieldwork, laboratory analysis cartographic products. indicated, exclusively for crops, between 7 32 Mg 87 460 , respectively. However, general, highest occurred on terrains eucalyptus plantations located downhill, lowest flat land native forest. linked directly losses. Soil result use practices, slope agricultural adopted area. These can be used planning priority definition areas needing such green manuring, planting contour lines maintenance vegetation lines, which are already some parts study

Язык: Английский

Процитировано

2

Improving RUSLE predictions through UAV-based soil cover management factor (C) assessments: A novel approach for enhanced erosion analysis in sugarcane fields DOI
Filipe Castro Felix, Bernardo Moreira Cândido, Jener Fernando Leite de Moraes

и другие.

Journal of Hydrology, Год журнала: 2023, Номер 626, С. 130229 - 130229

Опубликована: Сен. 27, 2023

Язык: Английский

Процитировано

6

Quantitative assessment of morphometry and GIS integrated RUSLE model-based soil loss estimation from Pahuj river basin, central India DOI
Shruti Bhatt,

N. K. Rana,

Adesh Patel

и другие.

DELETED, Год журнала: 2024, Номер 90(4), С. 1049 - 1066

Опубликована: Май 10, 2024

In this study the morphometric indices of Pahuj river basin (PRB) were evaluated by applying remote sensing and GIS. The Shuttle Radar Topographic Mission (SRTM) based 30 m digital elevation (DEM) data was used in order to extract parameters using standard methods. PRB covering an area (3648 km2) is controlled homogenous lithology geological structures. drainage density indicates that permeable soil with coarse texture dominantly occurring large low-lying flat areas basin. Contrary high gradient consist impermeable hard granitic rocks Neoarchean Precambrian age a low quantity soil. value elongation ratio form factor reveal elongated show peak flows. To assess erosion susceptibility, attributes Revised Universal Soil Loss Equation (RUSLE) model integrated GIS estimate loss from results rainfall erosivity (R-factor) along pattern indicate upper catchment relatively exhibits intensity than middle lower region. findings (R), erodibility (K), topographic (LS), crop management (C) factors infer quite area. ruggedness number Melton (4.16) imply moderately rugged less prone erosion, particularly relief effective practices water conservation will enhance storage capacity prevent sediment PRB. research may be helpful resolve crisis can such drought-prone

Язык: Английский

Процитировано

2