Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(20), С. 29048 - 29070
Опубликована: Апрель 3, 2024
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(20), С. 29048 - 29070
Опубликована: Апрель 3, 2024
Язык: Английский
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Advances in Space Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 17, 2025
Landslides pose a significant threat to infrastructure, ecosystems, and human safety, necessitating accurate efficient susceptibility assessment methods. Traditional models often struggle capture the complex spatial dependencies interactions between geological environmental factors. To address this gap, study employs deep learning approach, utilizing convolutional neural network (CNN) for high-precision landslide mapping in Bakhtegan watershed, southwestern Iran. A comprehensive inventory was compiled using 235 documented locations, validated through remote sensing field surveys. An equal number of non-landslide locations were systematically selected ensure balanced model training. Fifteen key conditioning factors-including topographical, geological, hydrological, climatological variables-were incorporated into model. While traditional statistical methods fail extract hierarchies, CNN effectively processes multi-dimensional geospatial data, intricate patterns influencing slope instability. The outperformed other classification approaches, achieving an accuracy 95.76% precision 95.11%. Additionally, error metrics confirmed its reliability, with mean absolute (MAE) 0.11864, squared (MSE) 0.18796, root (RMSE) 0.18632. results indicate that northern northeastern regions watershed are highly susceptible landslides, highlighting areas where proactive mitigation strategies crucial. This demonstrates learning, particularly CNNs, offers powerful scalable solution assessment. findings provide valuable insights urban planners, engineers, policymakers implement effective risk reduction enhance resilience landslide-prone regions.
Язык: Английский
Процитировано
0International Journal of Remote Sensing, Год журнала: 2025, Номер unknown, С. 1 - 30
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
0Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(20), С. 29048 - 29070
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
3