Advances in Space Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Advances in Space Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Aerospace Science and Technology, Год журнала: 2024, Номер 148, С. 109085 - 109085
Опубликована: Март 25, 2024
Язык: Английский
Процитировано
8Aerospace Science and Technology, Год журнала: 2025, Номер unknown, С. 110050 - 110050
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Advances in Space Research, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Aerospace Science and Technology, Год журнала: 2025, Номер unknown, С. 110138 - 110138
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0International Journal of Dynamics and Control, Год журнала: 2025, Номер 13(5)
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
0International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(9), С. 5754 - 5773
Опубликована: Март 1, 2024
Summary This article investigates the issue of orbit coordination control for a class multi‐spacecraft formation systems in presence limited communication and external disturbance. To solve limitation sources, dynamic event trigger (DET) mechanism is developed to reduce frequency between follower spacecrafts. Subsequently, we explore robust DET mechanism‐based distributed self‐learning sliding mode design, which variable learning intensity‐based iterative algorithm designed approximate compensate space perturbation. approach can guarantee an triggering sequence without Zeno phenomenon accurate configuration simultaneously. Compared with traditional event‐triggered other state‐of‐the‐art approaches, scheme achieves higher accuracy meanwhile requires less resource. Finally, series numerical simulations demonstrate feasibility superiority triggered method.
Язык: Английский
Процитировано
2Aircraft Engineering and Aerospace Technology, Год журнала: 2024, Номер unknown
Опубликована: Июль 25, 2024
Purpose This paper aims to investigate the relative translational control for multiple spacecraft formation flying. proposes an engineering-friendly, structurally simple, fast and model-free algorithm. Design/methodology/approach a tanh-type self-learning (SLC) approach with variable learning intensity (VLI) guarantee global convergence of tracking error. algorithm utilizes controller's previous information in addition current system state avoids complicating structure. Findings The proposed is can obtain law without accurate modeling dynamics. tanh function tune magnitude reduce saturation behavior when error large. Practical implications model-free, robust perturbations such as disturbances uncertainties, has simple structure that very conducive engineering applications. Originality/value verified performance presence by simulation achieved high steady-state accuracy response speed over comparisons.
Язык: Английский
Процитировано
2Eng—Advances in Engineering, Год журнала: 2024, Номер 5(4), С. 3192 - 3211
Опубликована: Дек. 2, 2024
Neural networks (NNs) have revolutionized various fields, including aeronautics where it is applied in computational fluid dynamics, finite element analysis, load prediction, and structural optimization. Particularly optimization, neural deep are extensively employed to enhance the efficiency of genetic algorithms because, with this tool, possible speed up analysis process, which will also optimization process. The main objective paper present how can help process optimizing geometries composition composite structures (dimension, topology, volume fractions, reinforcement architecture, matrix/reinforcement composition, etc.) compared traditional methods. This article stands out by showcasing not only studies related but those field mechanics, emphasizing that underlying principles shared applicable both domains. use NNs as a surrogate model has been demonstrated be great tool for process; some shown accurate their predictions, an MSE 1×10−5 MAE 0.007%. It observed its helps reduce time, such 47.5 times faster than full aeroelastic model.
Язык: Английский
Процитировано
0Aircraft Engineering and Aerospace Technology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Purpose This paper aims to investigate the attitude synchronization issue of multi-spacecraft formation flying systems under limited communication resources. Design/methodology/approach The authors propose a distributed learning Chebyshev neural network controller (LCNNC) combining dynamic event-triggered (DET) mechanism and CNN model achieve accurate constraints. Findings proposed method can significantly reduce internal frequency improve accuracy. Practical implications requires low resources, has high control accuracy is thus suitable for engineering applications. Originality/value A novel DET mechanism-based LCNNC
Язык: Английский
Процитировано
0Advances in Space Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0