Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109705 - 109705
Опубликована: Дек. 4, 2024
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109705 - 109705
Опубликована: Дек. 4, 2024
Язык: Английский
Computer Science Review, Год журнала: 2024, Номер 54, С. 100690 - 100690
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
6Computers and Electronics in Agriculture, Год журнала: 2024, Номер 227, С. 109586 - 109586
Опубликована: Ноя. 14, 2024
Язык: Английский
Процитировано
3Agronomy, Год журнала: 2025, Номер 15(1), С. 145 - 145
Опубликована: Янв. 9, 2025
Due to the short time, high labor intensity and workload of fruit vegetable harvesting, robotic harvesting instead manual operations is future. The accuracy object detection location directly related picking efficiency, quality speed fruit-harvesting robots. Because its low recognition accuracy, slow poor localization traditional algorithm cannot meet requirements automatic-harvesting increasingly evolving powerful deep learning technology can effectively solve above problems has been widely used in last few years. This work systematically summarizes analyzes about 120 literatures on three-dimensional positioning algorithms robots over 10 years, reviews several significant methods. difficulties challenges faced by current are proposed from aspects lack large-scale high-quality datasets, complexity agricultural environment, etc. In response challenges, corresponding solutions future development trends constructively proposed. Future research technological should first these using weakly supervised learning, efficient lightweight model construction, multisensor fusion so on.
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 231, С. 109908 - 109908
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110343 - 110343
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2024, Номер 14(18), С. 8243 - 8243
Опубликована: Сен. 13, 2024
Fruit quality assessment is vital for ensuring consumer satisfaction and marketability in agriculture. This study explores deep learning techniques assessing fruit quality, focusing on practical deployment resource-constrained environments. Two approaches were compared: training a convolutional neural network (CNN) from scratch fine-tuning pre-trained MobileNetV2 model through transfer learning. The performance of these models was evaluated using subset the Fruits-360 dataset chosen to simulate real-world conditions small-scale producers. selected its compact size efficiency, suitable devices with limited computational resources. Both achieved high accuracy, demonstrating faster convergence slightly better performance. Feature map visualizations provided insight into model’s decision-making, highlighting damaged areas fruits which enhances transparency trust end users. underscores potential modernize assessment, offering practical, efficient, interpretable tools farmers.
Язык: Английский
Процитировано
2Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109705 - 109705
Опубликована: Дек. 4, 2024
Язык: Английский
Процитировано
2