Near Real-Time Flood Monitoring Using Multi-Sensor Optical Imagery and Machine Learning by GEE: An Automatic Feature-Based Multi-Class Classification Approach
Remote Sensing,
Год журнала:
2024,
Номер
16(23), С. 4454 - 4454
Опубликована: Ноя. 27, 2024
Flooding
is
one
of
the
most
severe
natural
hazards,
causing
widespread
environmental,
economic,
and
social
disruption.
If
not
managed
properly,
it
can
lead
to
human
losses,
property
damage,
destruction
livelihoods.
The
ability
rapidly
assess
such
damages
crucial
for
emergency
management.
Near
Real-Time
(NRT)
spatial
information
on
flood-affected
areas,
obtained
via
remote
sensing,
essential
disaster
response,
relief,
urban
industrial
reconstruction,
insurance
services,
damage
assessment.
Numerous
flood
mapping
methods
have
been
proposed,
each
with
distinct
strengths
limitations.
Among
widely
used
are
machine
learning
algorithms
spectral
indices,
though
these
often
face
challenges,
particularly
in
threshold
selection
indices
sampling
process
supervised
classification.
This
study
aims
develop
an
NRT
approach
using
classification
based
features.
method
automatically
generates
training
samples
through
masks
derived
from
indices.
More
specifically,
this
uses
FWEI,
NDVI,
NDBI,
BSI
extract
water/flood,
vegetation,
built-up
soil,
respectively.
Otsu
thresholding
technique
applied
create
masks.
Land
cover
then
performed
Random
Forest
algorithm
generated
samples.
final
map
by
subtracting
pre-flood
water
class
post-flood
image.
proposed
implemented
optical
satellite
images
Sentinel-2,
Landsat-8,
Landsat-9.
method’s
accuracy
rigorously
evaluated
compared
those
techniques.
suggested
achieves
highest
overall
(OA)
90.57%
a
Kappa
Coefficient
(KC)
0.89,
surpassing
SVM
(OA:
90.04%,
KC:
0.88),
Decision
Trees
88.64%,
0.87),
like
AWEI
84.12%,
0.82),
FWEI
88.23%,
0.86),
NDWI
85.78%,
0.84),
MNDWI
87.67%,
0.85).
These
results
underscore
superior
effectiveness
detection
monitoring
multi-sensor
imagery.
Язык: Английский
Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model
Remote Sensing,
Год журнала:
2024,
Номер
16(13), С. 2390 - 2390
Опубликована: Июнь 28, 2024
Soil
erosion
represents
a
complex
ecological
issue
that
is
present
on
global
level,
with
negative
consequences
for
environmental
quality,
the
conservation
and
availability
of
natural
resources,
population
safety,
material
security,
both
in
rural
urban
areas.
To
mitigate
harmful
effects
soil
erosion,
map
can
be
created.
Broadly
applied
Balkan
Peninsula
region
(Serbia,
Bosnia
Herzegovina,
Croatia,
Slovenia,
Montenegro,
North
Macedonia,
Romania,
Bulgaria,
Greece),
Erosion
Potential
Method
(EPM)
an
empirical
model
widely
process
creating
maps.
In
this
study,
innovation
identification
mapping
processes
was
made,
coefficient
types
extent
slumps
(φ),
representing
one
most
sensitive
parameters
EPM.
The
(φ)
consisted
applying
remote
sensing
methods
satellite
images
from
Landsat
mission.
research
area
which
were
obtained
thematic
maps
(coefficient
φ)
created
Federation
Herzegovina
Brčko
District
(situated
Herzegovina).
Google
Earth
Engine
(GEE)
platform
employed
to
retrieve
7
Enhanced
Thematic
Mapper
plus
(ETM+)
8
Operational
Land
Imager
Thermal
Infrared
Sensor
(OLI/TIRS)
imagery
over
period
ten
years
(from
1
January
2010
31
December
2020).
performed
based
Bare
Index
(BSI)
by
equation
fractional
bare
cover.
spatial–temporal
distribution
cover
enabled
definition
values
field.
An
accuracy
assessment
conducted
190
reference
samples
field
using
confusion
matrix,
overall
(OA),
user
(UA),
producer
(PA),
Kappa
statistic.
Using
OA
85.79%
obtained,
while
UA
ranged
33%
100%,
PA
50%
100%.
Applying
statistic,
0.82
indicating
high
level
accuracy.
time
series
multispectral
each
month
crucial
element
monitoring
occurrence
various
(surface,
mixed,
deep)
Additionally,
it
contributes
significantly
decision-making,
strategies,
plans
domain
control
work,
development
identifying
erosion-prone
areas,
defense
against
torrential
floods,
creation
at
local,
regional,
national
levels.
Язык: Английский
The ensemble learning combined with the pruning model reveals the spectral response mechanism of tidal flat mapping in China
Ecological Informatics,
Год журнала:
2025,
Номер
unknown, С. 103104 - 103104
Опубликована: Март 1, 2025
Язык: Английский
Validation of sentinel 2 based machine learning models for Czech National Forest Inventory
Ecological Informatics,
Год журнала:
2025,
Номер
unknown, С. 103133 - 103133
Опубликована: Апрель 1, 2025
Язык: Английский
A detection method for multi-type earth's surface anomalies based on multi-dimensional feature space
International Journal of Digital Earth,
Год журнала:
2024,
Номер
17(1)
Опубликована: Авг. 30, 2024
Язык: Английский
Multicriteria evaluation and remote sensing approach to identifying degraded soil areas in northwest Peru
Geocarto International,
Год журнала:
2024,
Номер
40(1)
Опубликована: Дек. 23, 2024
Soil
is
a
vital
nonrenewable
resource
characterized
by
rapid
degradation
and
slow
regeneration
processes.
In
this
study,
soil
in
Jaén
San
Ignacio
was
assessed
via
multicriteria
evaluation
approach
combined
with
remote
sensing
(RS)
data.
Nine
factors
were
analyzed
classified
three
categories:
environmental,
topographic,
edaphological
factors.
The
results
revealed
that
the
slope
(59.07%)
main
influencing
factor,
followed
land
use
cover
(LULC)
(56.36%).
map
83.48%
of
area
exhibited
moderate
degradation,
14.49%
low
1.56%
high
degradation.
districts
Pomahuaca
José
de
Lourdes
demonstrated
largest
areas
accounting
for
13.71%
22.54%,
respectively.
Bellavista
Huarango
very
0.27%
0.08%,
(AHP)
method
RS
data
employed
to
assess
highlighting
need
sustainable
restoration
conservation
strategies.
Язык: Английский
Capítulo 15: Identificación de suelo desnudo utilizando Random Forest en la zona norte y centro del departamento de Sucre - Colombia
Опубликована: Дек. 31, 2024
La
degradación
del
suelo
en
la
región
norte
y
centro
departamento
de
Sucre,
Colombia,
se
ha
intensificado
debido
a
deforestación
al
uso
inadecuado
suelo,
afectando
gravemente
su
sostenibilidad
ambiental.
Este
estudio
tuvo
como
objetivo
identificar
áreas
desnudo
mediante
imágenes
Landsat
8
clasificación
supervisada
usando
el
modelo
Random
Forest.
El
análisis
abarcó
5,123.58
km²
empleó
OLI/TIRS
año
2020.
algoritmo
Forest
combinó
con
técnica
validación
cruzada
RepeatedStratifiedKFold,
10
pliegues
3
repeticiones,
utilizando
2,571
puntos
912
otras
coberturas.
alcanzó
una
precisión
promedio
99%,
exactitud
0.985,
valores
medios
recall
F1-score
0.99,
un
AUC
1.00
coeficiente
Kappa
0.96.
Los
resultados
subrayaron
relevancia
las
bandas
SWIR2,
Red
Blue
para
identificación
desnudo,
lo
cual
respaldó
investigaciones
anteriores.
En
conclusión,
esta
metodología
demostró
ser
eficaz
apoyar
estrategias
restauración
manejo
sostenible
zonas
afectadas
por
erosión
Sucre.