
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 3, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 3, 2024
Язык: Английский
Crop Protection, Год журнала: 2024, Номер unknown, С. 106992 - 106992
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
3Smart Agricultural Technology, Год журнала: 2024, Номер unknown, С. 100664 - 100664
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3Algorithms, Год журнала: 2025, Номер 18(2), С. 84 - 84
Опубликована: Фев. 5, 2025
Many sciences exploit algorithms in a large variety of applications. In agronomy, amounts agricultural data are handled by adopting procedures for optimization, clustering, or automatic learning. this particular field, the number scientific papers has significantly increased recent years, triggered scientists using artificial intelligence, comprising deep learning and machine methods bots, to process crop, plant, leaf images. Moreover, many other examples can be found, with different applied plant diseases phenology. This paper reviews publications which have appeared past three analyzing used classifying agronomic aims crops applied. Starting from broad selection 6060 papers, we subsequently refined search, reducing 358 research articles 30 comprehensive reviews. By summarizing advantages applying analyses, propose guide farming practitioners, agronomists, researchers, policymakers regarding best practices, challenges, visions counteract effects climate change, promoting transition towards more sustainable, productive, cost-effective encouraging introduction smart technologies.
Язык: Английский
Процитировано
0Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(3)
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2025, Номер 17(5), С. 906 - 906
Опубликована: Март 4, 2025
Extracting the quantity and geolocation data of small objects at organ level via large-scale aerial drone monitoring is both essential challenging for precision agriculture. The quality reconstructed digital orthophoto maps (DOMs) often suffers from seamline distortion ghost effects, making it difficult to meet requirements organ-level detection. While raw images do not exhibit these issues, they pose challenges in accurately obtaining detected objects. detection was improved this study through fusion with using EasyIDP tool, thereby establishing a mapping relationship data. Small object conducted by Slicing-Aided Hyper Inference (SAHI) framework YOLOv10n on accelerate inferencing speed farmland. As result, comparing directly DOM, accelerated accuracy improved. proposed SAHI-YOLOv10n achieved mean average (mAP) scores 0.825 0.864, respectively. It also processing latency 1.84 milliseconds 640×640 resolution frames application. Subsequently, novel crop canopy dataset (CCOD-Dataset) created interactive annotation SAHI-YOLOv10n, featuring 3986 410,910 annotated boxes. method demonstrated feasibility detecting three in-field farmlands, potentially benefiting future wide-range applications.
Язык: Английский
Процитировано
0Measurement Sensors, Год журнала: 2025, Номер unknown, С. 101877 - 101877
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 3, 2024
Язык: Английский
Процитировано
0