Optimising Systems in Intelligent Buildings DOI
Amirhosein Ghaffarianhoseini, Ali GhaffarianHoseini, Kamal Dhawan

и другие.

Emerald Publishing Limited eBooks, Год журнала: 2024, Номер unknown, С. 107 - 131

Опубликована: Сен. 25, 2024

A review on enhancing energy efficiency and adaptability through system integration for smart buildings DOI

Um-e-Habiba,

Ijaz Ahmed, Mohammad Asif

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 89, С. 109354 - 109354

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

40

Digital twin (DT) and extended reality (XR) for building energy management DOI

Seungkeun Yeom,

Juui Kim,

Hyuna Kang

и другие.

Energy and Buildings, Год журнала: 2024, Номер 323, С. 114746 - 114746

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

12

Unmanned Ground Vehicles (UGVs)-based mobile sensing for Indoor Environmental Quality (IEQ) monitoring: Current challenges and future directions DOI Creative Commons

Ebrahim Alinezhad,

Victor Gan,

Victor W.-C. Chang

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 88, С. 109169 - 109169

Опубликована: Март 29, 2024

The deployment of Unmanned Ground Vehicles (UGVs) offers a promising solution for addressing spatial inefficiency and non-detection zone challenges the Indoor Environmental Quality (IEQ) monitoring area. Nevertheless, it is crucial to assess current state research development in this area, identify persistent challenges, outline future directions. This review examines previous studies prospects. data on four classified clusters (UGV structure components, Monitoring capturing, Data analysis validation, Future directions) were extracted from 30 out total 111 studies. results suggested that UGV navigation could benefit integration 3D environmental models, its sensing reliability performance can be further better evaluated by including human behavior into research, developing practical approaches mitigating sensor response time error calculating optimal velocity during particulate matter capturing enable enhance acquisition stage. Furthermore, leveraging strengths approach advance domains such as method with Building Automation System (BAS), source apportionment, IEQ predictive IAQ simulation air pollutants concentration spikes analysis. findings study offer valuable insights researchers interested implementing UGV-based mobile effective assessment.

Язык: Английский

Процитировано

9

Recent advancements of human-centered design in building engineering: A comprehensive review DOI
Y.Z. Zhang, Junyu Chen, Hexu Liu

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 84, С. 108529 - 108529

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

7

Occupant-centered indoor environmental quality management: Physiological response measuring methods DOI
Minjin Kong, Jongbaek An, Dahyun Jung

и другие.

Building and Environment, Год журнала: 2023, Номер 243, С. 110661 - 110661

Опубликована: Июль 24, 2023

Язык: Английский

Процитировано

15

Indoor environmental quality models: A bibliometric, mapping and clustering review DOI
Iasmin Lourenço Niza,

Gabriel Costa Cordeiro Gomes,

Evandro Eduardo Broday

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2024, Номер 203, С. 114791 - 114791

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

6

Real-time clothing insulation level classification based on model transfer learning and computer vision for PMV-based heating system optimization through piecewise linearization DOI Creative Commons

Zhichen Wei,

John Kaiser Calautit, Shuangyu Wei

и другие.

Building and Environment, Год журнала: 2024, Номер 253, С. 111277 - 111277

Опубликована: Фев. 10, 2024

Achieving a balance between energy efficiency and thermal comfort is pivotal aspect of sustainable building design. Traditional control methods typically maintain indoor air temperature within predetermined limits, disregarding variable factors like occupancy activity clothing levels, which significantly influence perception. Conversely, comfort-based strategies present an opportunity to automate heating cooling systems, dynamically responding variations in comfort. To achieve this, real-time information on insulation (and its adjustment) indispensable for accurately estimating In this study, we explore the potential novel detection approach capable classifying utilizing optimize operation systems. By doing so, proposed method facilitates delivery conditions tailored user requirements potentially reduces wastage. The development 2 stage computer vision-based framework classification forms core approach. Leveraging deep learning network algorithms, performs recognition tasks, even with limited training data, enabling light, medium heavy clothing. address nonlinearity traditional predicted mean vote (PMV) models, applied piecewise linearization our PMV-based optimal strategy. Through initial experimental field tests conducted case study university building, evaluate method's performance. results demonstrate ability classify levels generate profiles. We further analyze impact performance through scenario-based modelling simulations. showed integrating controls enhance overcome limitations predefined or fixed schedules. However, while highlights feasibility multiple occupants engaged diverse activities, acknowledge need refinement accuracy seamless integration

Язык: Английский

Процитировано

5

Emotion-oriented recommender system for personalized control of indoor environmental quality DOI

Hakpyeong Kim,

Taehoon Hong

Building and Environment, Год журнала: 2024, Номер 254, С. 111396 - 111396

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

5

A novel online prediction method for vehicle cabin temperature and passenger thermal sensation DOI
Ce Zhang,

Beiran Hou,

Minxia Li

и другие.

Applied Thermal Engineering, Год журнала: 2024, Номер 245, С. 122853 - 122853

Опубликована: Март 2, 2024

Язык: Английский

Процитировано

4

An AI-Based Evaluation Framework for Smart Building Integration into Smart City DOI Open Access
Mustafa Muthanna Najm Shahrabani, Rasa Apanavičienė

Sustainability, Год журнала: 2024, Номер 16(18), С. 8032 - 8032

Опубликована: Сен. 13, 2024

The integration of smart buildings (SBs) into cities (SCs) is critical to urban development, with the potential improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool enhance SB and SC development. authors apply an AI-based methodology, particularly Large Language Models OpenAI ChatGPT-3 Google Bard AI experts, uniquely evaluate 26 criteria that represent services across five infrastructure domains (energy, mobility, water, waste management, security), emphasizing their contributions quantifying impact on efficiency, resilience, environmental sustainability SC. framework was then validated through two rounds Delphi method, leveraging human expert knowledge iterative consensus-building process. framework’s efficiency in analyzing complicated information generating important insights demonstrated via case studies. These findings contribute deeper understanding effects domains, highlighting intricate nature SC, well revealing areas require further realize performance objectives.

Язык: Английский

Процитировано

4