Prediction of the Unconfined Compressive Strength of a One-Part Geopolymer-Stabilized Soil Using Deep Learning Methods with Combined Real and Synthetic Data DOI Creative Commons
Qinyi Chen,

Guo Hu,

Jun Wu

и другие.

Buildings, Год журнала: 2024, Номер 14(9), С. 2894 - 2894

Опубликована: Сен. 13, 2024

This study focused on exploring the utilization of a one-part geopolymer (OPG) as sustainable alternative binder to ordinary Portland cement (OPC) in soil stabilization, offering significant environmental advantages. The unconfined compressive strength (UCS) was key index for evaluating efficacy OPG traditionally demanding substantial resources terms cost and time. In this research, four distinct deep learning (DL) models (Artificial Neural Network [ANN], Backpropagation [BPNN], Convolutional [CNN], Long Short-Term Memory [LSTM]) were employed predict UCS OPG-stabilized soft clay, providing more efficient precise methodology. Among these models, CNN exhibited highest performance (MAE = 0.022, R2 0.9938), followed by LSTM 0.0274, 0.9924) BPNN 0.0272, 0.9921). Wasserstein Generative Adversarial (WGAN) further utilized generate additional synthetic samples expanding training dataset. incorporation generated WGAN into set DL led improved performance. When number achieved 200, WGAN-CNN model provided most accurate results, with an value 0.9978 MAE 0.9978. Furthermore, assess reliability gain insights influence input variables predicted outcomes, interpretable Machine Learning techniques, including sensitivity analysis, Shapley Additive Explanation (SHAP), 1D Partial Dependence Plot (PDP) analyzing interpreting models. research illuminates new aspects application real data properties soil, contributing saving time cost.

Язык: Английский

Enhancement of underwater dam crack images using multi-feature fusion DOI
Dong Chen, Fei Kang, Junjie Li

и другие.

Automation in Construction, Год журнала: 2024, Номер 167, С. 105727 - 105727

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

13

Coupled data/physics-driven framework for accurate and efficient structural response simulation DOI Creative Commons
Guanghao Zhai, Billie F. Spencer, Jinhui Yan

и другие.

Engineering Structures, Год журнала: 2025, Номер 327, С. 119636 - 119636

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

1

AI-Driven Innovations in Earthquake Risk Mitigation: A Future-Focused Perspective DOI Creative Commons
Vagelis Plevris

Geosciences, Год журнала: 2024, Номер 14(9), С. 244 - 244

Опубликована: Сен. 15, 2024

This study explores the transformative potential of artificial intelligence (AI) in revolutionizing earthquake risk mitigation across six key areas. Unlike traditional approaches, this paper examines how AI-driven innovations can uniquely enhance early warning systems, enabling real-time structural health monitoring, and providing dynamic, multi-hazard assessments that seamlessly integrate seismic data with other natural hazards such as tsunamis landslides. It introduces groundbreaking applications AI earthquake-resilient design, where generative design algorithms predictive analytics create structures optimally balance safety, cost, sustainability. The also presents a novel discussion on ethical implications domain, stressing critical need for transparency, accountability, bias mitigation. Looking forward, manuscript envisions development advanced platforms capable delivering real-time, personalized assessments, immersive public training programs, collaborative tools adapt to evolving data. These promise not only significantly current preparedness but pave way toward future societal impact earthquakes is drastically reduced. work underscores AI’s role shaping safer, more resilient future, emphasizing importance continued innovation, governance, efforts.

Язык: Английский

Процитировано

4

Building design and operation multi-objective optimization: Energy costs vs. Emissions DOI
Ying Tian,

Kang Chai

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115225 - 115225

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A machine learning approach to predicting pervious concrete properties: a review DOI
Navaratnarajah Sathiparan, Pratheeba Jeyananthan, Daniel Niruban Subramaniam

и другие.

Innovative Infrastructure Solutions, Год журнала: 2025, Номер 10(2)

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

0

A Review of Artificial Intelligence Applications in Architectural Design: Energy-Saving Renovations and Adaptive Building Envelopes DOI Creative Commons

Yangluxi Li,

Huishu Chen,

Peijun Yu

и другие.

Energies, Год журнала: 2025, Номер 18(4), С. 918 - 918

Опубликована: Фев. 14, 2025

This paper explores the applications and impacts of artificial intelligence (AI) in building envelopes interior space design. The relevant literature was searched using databases such as Science Direct, Web Science, Scopus, CNKI, 89 studies were selected for analysis based on PRISMA protocol. first analyzes role AI transforming architectural design methods, particularly its different roles auxiliary, collaborative, leading processes. It then discusses AI’s energy-efficient renovation envelopes, smart façade cold climate buildings, thermal imaging detection. Furthermore, this summarizes AI-based environment covering current state research, applications, impacts, challenges both domestically internationally. Finally, looks ahead to broad prospects technology architecture fields while addressing related integration personalized environmental sustainability concepts.

Язык: Английский

Процитировано

0

Deep learning-based automated method for enhancing excavator activity recognition in far-field construction site surveillance videos DOI
Yejin Shin, Seungwon Seo, Choongwan Koo

и другие.

Automation in Construction, Год журнала: 2025, Номер 173, С. 106099 - 106099

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A physics-informed generative adversarial network for advancing solutions in ocean acoustics DOI
Rui Xia, Xiaowei Guo,

Huimin Zhang

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(3)

Опубликована: Март 1, 2025

Advancements in artificial intelligence, notably the groundbreaking efforts deep learning exemplified by physics-informed neural networks, have opened up innovative pathways for addressing intricate ocean acoustic problems. However, conventional networks are limited solving high-frequency forward and inverse This paper introduces a novel generative adversarial network integrating forward-solving (generator) an parameter-estimating (discriminator). The generator incorporates convolutional with hard-constrained boundary conditions optimized loss functions to effectively predict solution governed time-domain wave equation. For problems, discriminator is introduced parameter estimation complete network. Furthermore, customized optimization strategies adaptive weighting function devised boost training performance further. test results of both reverse cases show advantage our model over existing methods terms accuracy. result indicates its vast potential applications acoustics engineering.

Язык: Английский

Процитировано

0

Digital Narratives and AI in Modern Media: A Systematic Literature Review DOI

Kartini Harahap,

Muhtar,

Sari Sakarina

и другие.

Studies in systems, decision and control, Год журнала: 2025, Номер unknown, С. 197 - 205

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A generative adversarial learning strategy for spatial inspection of compaction quality DOI
Jianhua Li, Xuefei Wang, Jiale Li

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102791 - 102791

Опубликована: Сен. 2, 2024

Язык: Английский

Процитировано

3