Physics-guided deep learning for generative design of large-diameter tunnels under existing metro lines DOI
Limao Zhang,

Jiaqi Wang,

Zhuang Xia

и другие.

Automation in Construction, Год журнала: 2024, Номер 170, С. 105901 - 105901

Опубликована: Дек. 17, 2024

Язык: Английский

Multi-objective optimization for flexible design of aerial building machine under various wind conditions DOI
Limao Zhang, Junwei Ma,

Jiaqi Wang

и другие.

Automation in Construction, Год журнала: 2025, Номер 171, С. 105956 - 105956

Опубликована: Янв. 10, 2025

Язык: Английский

Процитировано

1

Sketch-Guided Topology Optimization with Enhanced Diversity for Innovative Structural Design DOI Creative Commons

Siyu Zhu,

Jie Hu,

Jin Qi

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2753 - 2753

Опубликована: Март 4, 2025

Topology optimization (TO) is a powerful generative design tool for innovative structural design, capable of optimizing material distribution to generate structures with superior performance. However, current topology algorithms mostly target single objective and are highly dependent on the problem definition parameters, causing two critical issues: limited human controllability solution diversity. These issues often lead burdensome iterations insufficient exploration. This paper proposes multi-solution TO framework address them. Human designers express their stylistic preferences through sketches which decomposed into stroke closed-shape elements flexibly guide each process. Sketch-based constraints integrated Fourier mapping-based length-scale control enhance controllability. Solution diversity achieved by perturbing mapping frequencies load conditions in neural implicit framework. Adaptive parallel scale adjustment incorporated reduce computational cost Using wheel spoke as case study, mechanical performance generated solutions well effectiveness analyzed both qualitatively quantitatively. The results reveal that sketch-based have distinct effects features different impacts diversity, thereby enabling fine-grained flexible better balance conflicting objectives.

Язык: Английский

Процитировано

0

Trajectory of building and structural design automation from generative design towards the integration of deep generative models and optimization: A review DOI
Soheila Kookalani, Erika Pärn, Ioannis Brilakis

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 97, С. 110972 - 110972

Опубликована: Окт. 8, 2024

Язык: Английский

Процитировано

1

Physics-guided deep learning for generative design of large-diameter tunnels under existing metro lines DOI
Limao Zhang,

Jiaqi Wang,

Zhuang Xia

и другие.

Automation in Construction, Год журнала: 2024, Номер 170, С. 105901 - 105901

Опубликована: Дек. 17, 2024

Язык: Английский

Процитировано

0