Lecture notes in civil engineering, Год журнала: 2023, Номер unknown, С. 295 - 310
Опубликована: Сен. 7, 2023
Язык: Английский
Lecture notes in civil engineering, Год журнала: 2023, Номер unknown, С. 295 - 310
Опубликована: Сен. 7, 2023
Язык: Английский
Bioresource Technology, Год журнала: 2023, Номер 370, С. 128539 - 128539
Опубликована: Янв. 3, 2023
Язык: Английский
Процитировано
49Bioresource Technology, Год журнала: 2022, Номер 369, С. 128445 - 128445
Опубликована: Дек. 5, 2022
Язык: Английский
Процитировано
54Bioresource Technology, Год журнала: 2022, Номер 369, С. 128451 - 128451
Опубликована: Дек. 9, 2022
Язык: Английский
Процитировано
39Waste Management, Год журнала: 2024, Номер 178, С. 155 - 167
Опубликована: Фев. 24, 2024
Язык: Английский
Процитировано
12Environmental Pollution, Год журнала: 2022, Номер 316, С. 120640 - 120640
Опубликована: Ноя. 17, 2022
Язык: Английский
Процитировано
36Process Safety and Environmental Protection, Год журнала: 2023, Номер 173, С. 529 - 557
Опубликована: Март 16, 2023
Язык: Английский
Процитировано
21Circular Economy, Год журнала: 2024, Номер 3(2), С. 100088 - 100088
Опубликована: Май 31, 2024
Biological treatment technologies (such as anaerobic digestion, composting, and insect farming) have been extensively employed to handle various degradable organic wastes. However, the inherent complexity instability of biological processes adversely affect production renewable energy nutrient-rich products. To ensure stable consistent product quality, researchers invested heavily in control strategies for treatment, with machine learning (ML) recently proving effective optimizing predicting parameters, detecting disturbances, enabling real-time monitoring. This review critically assesses application ML providing an in-depth evaluation key algorithms. study reveals that artificial neural networks, tree-based models, support vector machines, genetic algorithms are leading treatment. A thorough investigation applications farming underscores its remarkable capacity predict products, optimize processes, perform monitoring, mitigate pollution emissions. Furthermore, this outlines challenges prospects encountered applying highlighting crucial directions future research area.
Язык: Английский
Процитировано
8Renewable and Sustainable Energy Reviews, Год журнала: 2023, Номер 187, С. 113771 - 113771
Опубликована: Сен. 23, 2023
Язык: Английский
Процитировано
16Environmental Research, Год журнала: 2024, Номер 249, С. 118449 - 118449
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
5The journal of cotton science/Journal of cotton science, Год журнала: 2025, Номер 28(3), С. 136 - 144
Опубликована: Янв. 27, 2025
Cotton (Gossypium hirsutum) is one of the most difficult crops to manage irrigation effectively due crop’s perennial physiology. In recent years, many new technologies have been developed help improve management. The main objective this study was evaluate various management tools and assist farmers in determining which method best for their operation. Other objectives included monitoring soil moisture optimal application point each by logging total rainfall distribution throughout growing season. A three-year conducted at University Georgia (UGA) Stripling Irrigation Research Park near Camilla, GA where cotton grown on loamy sand soil. lateral movement, overhead sprinkler system equipped with a variable rate allowed plots be irrigated independently based treatment. treatments 20- 45-kPa weighted average water tension (SWT) measurements made using three Watermark SWT sensors placed two replicates. UGA SmartIrrigation app (SI app), Checkbook method, rainfed check were trial. Each evaluated crop yield, water-use efficiency, profitability. analysis revealed significant variations several metrics between validates threshold SI are top-performing advanced scheduling showed importance strengths weaknesses method.
Язык: Английский
Процитировано
0