Spent coffee ground torrefaction for waste remediation and valorization DOI
Kuan‐Ting Lee, Yi-Tse Shih,

Saravanan Rajendran

и другие.

Environmental Pollution, Год журнала: 2023, Номер 324, С. 121330 - 121330

Опубликована: Фев. 23, 2023

Язык: Английский

Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification DOI
Van Giao Nguyen, Thi Thanh Xuan Nguyen, Phuoc Quy Phong Nguyen

и другие.

International Journal of Hydrogen Energy, Год журнала: 2023, Номер 54, С. 127 - 160

Опубликована: Май 21, 2023

Язык: Английский

Процитировано

113

Recent advances and perspectives in roles of humic acid in anaerobic digestion of waste activated sludge DOI

Zhang-Wei He,

Fei Wang,

Zheng-Shuo Zou

и другие.

Chemical Engineering Journal, Год журнала: 2023, Номер 466, С. 143081 - 143081

Опубликована: Апрель 23, 2023

Язык: Английский

Процитировано

47

Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review DOI Creative Commons
Gokulan Ravindiran,

Sivarethinamohan Rajamanickam,

Gorti Janardhan

и другие.

Biochar, Год журнала: 2024, Номер 6(1)

Опубликована: Июнь 21, 2024

Abstract Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers comprehensive overview of the various feedstocks used in biochar production, different types degradation processes, characterization, properties, modifications to engineered materials, and their applications environment. The quality biochar, including surface area, pore size volume, functional group formation, is significantly influenced by specific conditions under which conversion takes place. Each diverse processes employed produce yields distinct set properties final product. In recent years, has gained widespread recognition utilization fields such as wastewater treatment, carbon sequestration, reduction greenhouse gas emissions, biogas catalysis biofuel industries, construction, soil enhancement. summary, promising mitigation tool achieve sustainable addition its benefits, application presents several challenges, selection feedstocks, methods biochar. current review summarizes factors that could lead significant advancements future applications. Graphical

Язык: Английский

Процитировано

24

Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy DOI
Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut

и другие.

Biofuels Bioproducts and Biorefining, Год журнала: 2024, Номер 18(2), С. 567 - 593

Опубликована: Фев. 5, 2024

Abstract Biochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand sustainable energy. Efficient management systems are needed in order exploit fully of biochar. Modern machine learning (ML) techniques, and particular ensemble approaches explainable AI methods, valuable forecasting properties efficiency biochar properly. Machine‐learning‐based forecasts, optimization, feature selection critical improving techniques. In this research, we explore influences these techniques on accurate yield range sources. We emphasize importance interpretability model, improves human comprehension trust ML predictions. Sensitivity analysis shown be an effective technique finding crucial characteristics that influence synthesis Precision prognostics have far‐reaching ramifications, influencing industries such logistics, technologies, successful use renewable These advances can make substantial contribution greener future encourage development circular biobased economy. This work emphasizes using sophisticated data‐driven methodologies synthesis, usher ecologically friendly energy solutions. breakthroughs hold key more environmentally future.

Язык: Английский

Процитировано

23

Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy DOI Open Access
Viet Duc Bui, Hoang Phuong Vu, Hoang Phuong Nguyen

и другие.

Sustainable Energy Technologies and Assessments, Год журнала: 2022, Номер 55, С. 102991 - 102991

Опубликована: Дек. 27, 2022

Язык: Английский

Процитировано

44

Nanotechnology- A ray of hope for heavy metals removal DOI

V. Mohanapriya,

R. Sakthivel,

Nguyen Dang Khoa Pham

и другие.

Chemosphere, Год журнала: 2022, Номер 311, С. 136989 - 136989

Опубликована: Окт. 25, 2022

Язык: Английский

Процитировано

40

Comprehensive review on recent production trends and applications of biochar for greener environment DOI

Sivasubramanian Manikandan,

Sundaram Vickram,

Ramasamy Subbaiya

и другие.

Bioresource Technology, Год журнала: 2023, Номер 388, С. 129725 - 129725

Опубликована: Сен. 7, 2023

Язык: Английский

Процитировано

39

A critical review of improving mainstream anammox systems: Based on macroscopic process regulation and microscopic enhancement mechanisms DOI
Xiaonong Zhang, Xingxing Zhang,

Junjiang Chen

и другие.

Environmental Research, Год журнала: 2023, Номер 236, С. 116770 - 116770

Опубликована: Июль 28, 2023

Язык: Английский

Процитировано

35

Precise Prediction of Biochar Yield and Proximate Analysis by Modern Machine Learning and SHapley Additive exPlanations DOI
Lê Anh Tuấn, Ashok Pandey,

Ranjan Sirohi

и другие.

Energy & Fuels, Год журнала: 2023, Номер 37(22), С. 17310 - 17327

Опубликована: Окт. 28, 2023

Biochar is found to possess a large number of applications in energy and environmental areas. However, biochar could be produced from variety sources, showing that yield proximate analysis outcomes change over wide range. Thus, developing high-accuracy machine learning-based tool very necessary predict characteristics. In this study, hybrid technique was developed by blending modern learning (ML) algorithms with cooperative game theory-based Shapley Additive exPlanations (SHAP). SHAP employed help improve interpretability while offering insights into the decision-making process. ML models, linear regression as baseline method, more advanced methodologies like AdaBoost boosted tree (BRT) were employed. The prediction models evaluated on battery statistical metrics, all observed robust enough. Among three BRT-based model delivered best performance R2 range 0.982 0.999 during training phase 0.968 0.988 test. value mean squared error also quite low (0.89 9.168) for models. quantified each input element expected results provided in-depth understanding underlying dynamics. helped reveal temperature main factor affecting response predictions. proposed here provides substantial manufacturing process, allowing improved control properties increasing use sustainable flexible material numerous applications.

Язык: Английский

Процитировано

31

Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode DOI
Van Nhanh Nguyen, Swarup Kumar Nayak,

Huu Son Le

и другие.

International Journal of Hydrogen Energy, Год журнала: 2023, Номер 49, С. 868 - 909

Опубликована: Сен. 29, 2023

Язык: Английский

Процитировано

29