Environmental Pollution, Год журнала: 2023, Номер 324, С. 121330 - 121330
Опубликована: Фев. 23, 2023
Язык: Английский
Environmental Pollution, Год журнала: 2023, Номер 324, С. 121330 - 121330
Опубликована: Фев. 23, 2023
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2023, Номер 54, С. 127 - 160
Опубликована: Май 21, 2023
Язык: Английский
Процитировано
113Chemical Engineering Journal, Год журнала: 2023, Номер 466, С. 143081 - 143081
Опубликована: Апрель 23, 2023
Язык: Английский
Процитировано
47Biochar, Год журнала: 2024, Номер 6(1)
Опубликована: Июнь 21, 2024
Abstract Biochar, a carbon-rich material produced from biomass waste through thermal conversion, holds great environmental promise. This article offers comprehensive overview of the various feedstocks used in biochar production, different types degradation processes, characterization, properties, modifications to engineered materials, and their applications environment. The quality biochar, including surface area, pore size volume, functional group formation, is significantly influenced by specific conditions under which conversion takes place. Each diverse processes employed produce yields distinct set properties final product. In recent years, has gained widespread recognition utilization fields such as wastewater treatment, carbon sequestration, reduction greenhouse gas emissions, biogas catalysis biofuel industries, construction, soil enhancement. summary, promising mitigation tool achieve sustainable addition its benefits, application presents several challenges, selection feedstocks, methods biochar. current review summarizes factors that could lead significant advancements future applications. Graphical
Язык: Английский
Процитировано
24Biofuels Bioproducts and Biorefining, Год журнала: 2024, Номер 18(2), С. 567 - 593
Опубликована: Фев. 5, 2024
Abstract Biochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand sustainable energy. Efficient management systems are needed in order exploit fully of biochar. Modern machine learning (ML) techniques, and particular ensemble approaches explainable AI methods, valuable forecasting properties efficiency biochar properly. Machine‐learning‐based forecasts, optimization, feature selection critical improving techniques. In this research, we explore influences these techniques on accurate yield range sources. We emphasize importance interpretability model, improves human comprehension trust ML predictions. Sensitivity analysis shown be an effective technique finding crucial characteristics that influence synthesis Precision prognostics have far‐reaching ramifications, influencing industries such logistics, technologies, successful use renewable These advances can make substantial contribution greener future encourage development circular biobased economy. This work emphasizes using sophisticated data‐driven methodologies synthesis, usher ecologically friendly energy solutions. breakthroughs hold key more environmentally future.
Язык: Английский
Процитировано
23Sustainable Energy Technologies and Assessments, Год журнала: 2022, Номер 55, С. 102991 - 102991
Опубликована: Дек. 27, 2022
Язык: Английский
Процитировано
44Chemosphere, Год журнала: 2022, Номер 311, С. 136989 - 136989
Опубликована: Окт. 25, 2022
Язык: Английский
Процитировано
40Bioresource Technology, Год журнала: 2023, Номер 388, С. 129725 - 129725
Опубликована: Сен. 7, 2023
Язык: Английский
Процитировано
39Environmental Research, Год журнала: 2023, Номер 236, С. 116770 - 116770
Опубликована: Июль 28, 2023
Язык: Английский
Процитировано
35Energy & Fuels, Год журнала: 2023, Номер 37(22), С. 17310 - 17327
Опубликована: Окт. 28, 2023
Biochar is found to possess a large number of applications in energy and environmental areas. However, biochar could be produced from variety sources, showing that yield proximate analysis outcomes change over wide range. Thus, developing high-accuracy machine learning-based tool very necessary predict characteristics. In this study, hybrid technique was developed by blending modern learning (ML) algorithms with cooperative game theory-based Shapley Additive exPlanations (SHAP). SHAP employed help improve interpretability while offering insights into the decision-making process. ML models, linear regression as baseline method, more advanced methodologies like AdaBoost boosted tree (BRT) were employed. The prediction models evaluated on battery statistical metrics, all observed robust enough. Among three BRT-based model delivered best performance R2 range 0.982 0.999 during training phase 0.968 0.988 test. value mean squared error also quite low (0.89 9.168) for models. quantified each input element expected results provided in-depth understanding underlying dynamics. helped reveal temperature main factor affecting response predictions. proposed here provides substantial manufacturing process, allowing improved control properties increasing use sustainable flexible material numerous applications.
Язык: Английский
Процитировано
31International Journal of Hydrogen Energy, Год журнала: 2023, Номер 49, С. 868 - 909
Опубликована: Сен. 29, 2023
Язык: Английский
Процитировано
29