Optimizing the Composting Process Emissions – Process Kinetics and Artificial Intelligence Approach DOI Open Access
Joanna Rosik, Sylwia Stegenta-Dąbrowska

Опубликована: Апрель 28, 2024

Although composting has many advantages in the treatment of organic waste, there are still problems and challenges associated with emissions, like NH3, VOCs, H2S, as well greenhouse gases such CO2, CH4, N2O. One promising approach to enhancing conditions is used novel analytical methods bad on artificial intelligence. To predict optimize emissions (CO, NH3) during process kinetics thought mathematical models (MM) machine learning (ML) were utilized. Data about everyday from laboratory compost’s biochar different incubation (50, 60, 70 °C) doses (0, 3, 6, 9, 12, 15% d.m.) for MM ML selections training. not been very effective predicting (R2 0.1 - 0.9), while acritical neural network (ANN, Bayesian Regularized Neural Network; R2 accuracy CO:0,71, CO2:0,81, NH3:0,95, H2S:0,72)) decision tree (DT, RPART; CO:0,693, CO2:0,80, NH3:0,93, H2S:0,65) have demonstrated satisfactory results. For first time CO H2S demonstrated. Further research a semi-scale field study needed improve developments models.

Язык: Английский

An artificial intelligence approach for identification of microalgae cultures DOI Creative Commons
Pablo Otálora, José Luís Guzmán, F.G. Acién

и другие.

New Biotechnology, Год журнала: 2023, Номер 77, С. 58 - 67

Опубликована: Июль 17, 2023

In this work, a model for the characterization of microalgae cultures based on artificial neural networks has been developed. The is essential to guarantee quality biomass, and objective work achieve simple fast method address issue. Data acquisition was performed using FlowCam, device capable capturing images cells detected in culture sample, which are used as inputs by model. can distinguish between 6 different genera microalgae, having trained with several species each genus. It further complemented classification threshold discard unwanted objects while improving overall accuracy achieved an up 97.27% when classifying culture. results demonstrate effectiveness Deep Learning models cultures, it being useful tool monitoring large-scale production facilities providing accurate over wide range genera.

Язык: Английский

Процитировано

17

Predicting maturity and identifying key factors in organic waste composting using machine learning models DOI
Ning Wang, Wanli Yang, Bingshu Wang

и другие.

Bioresource Technology, Год журнала: 2024, Номер 400, С. 130663 - 130663

Опубликована: Апрель 6, 2024

Язык: Английский

Процитировано

7

Synergistic improvement of humus formation in compost residue by fenton-like and effective microorganism composite agents DOI

Jun Zhuo Cai,

Ying Yu,

Zhan Biao Yang

и другие.

Bioresource Technology, Год журнала: 2024, Номер 400, С. 130703 - 130703

Опубликована: Апрель 15, 2024

Язык: Английский

Процитировано

7

Review: Biotic and abiotic approaches to artificial humic acids production DOI
Ming Wang, Yunting Li, Hao Peng

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2023, Номер 187, С. 113771 - 113771

Опубликована: Сен. 23, 2023

Язык: Английский

Процитировано

13

Biochar, phosphate, and magnesium oxide in seaweed and cornstarch dregs co-composting: Enhancing organic matter degradation, humification, and nitrogen retention DOI

Yinjie Cui,

Yang Zeng, Huili Hu

и другие.

Waste Management, Год журнала: 2024, Номер 187, С. 207 - 217

Опубликована: Июль 25, 2024

Язык: Английский

Процитировано

4

Intelligent health care: applications of artificial intelligence and machine learning in computational medicine DOI
Veenadhari Bhamidipaty, Durgananda Lahari Bhamidipaty,

Fayaz S.M

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 133 - 169

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Comprehensive analysis of spatiotemporal heterogeneity reveals the effects of physicochemical and biological factors on temperature rise during the Moutai-flavor Baijiu stacking fermentation process DOI

Yuanbu Li,

Xing Qin,

Xianglian Zeng

и другие.

Chemical Engineering Journal, Год журнала: 2025, Номер unknown, С. 161049 - 161049

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Characterization of aroma components and establishment of a year prediction model for Tuo teas stored for 2-10 years based on multispectral analysis and chemometrics DOI
Chenyang Ma, Di Tian,

Haiyan Yi

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107515 - 107515

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Machine learning-assisted solid waste life-cycle management: Applications, constrains, and future opportunities DOI

Qiuxia Zou,

Huabo Duan, Zhirui Yang

и другие.

Resources Conservation and Recycling, Год журнала: 2025, Номер 219, С. 108320 - 108320

Опубликована: Апрель 18, 2025

Язык: Английский

Процитировано

0

Artificial Intelligence for Predicting the Performance of Adsorption Processes in Wastewater Treatment: A Critical Review DOI
Mohammad Mansour, M. Bassyouni,

Rehab F. Abdel-Kader

и другие.

Earth and environmental sciences library, Год журнала: 2024, Номер unknown, С. 153 - 173

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

3