Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144621 - 144621
Опубликована: Дек. 1, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144621 - 144621
Опубликована: Дек. 1, 2024
Язык: Английский
Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(4), С. 113152 - 113152
Опубликована: Май 23, 2024
Язык: Английский
Процитировано
13Applied Soft Computing, Год журнала: 2024, Номер 164, С. 111975 - 111975
Опубликована: Июль 10, 2024
Data-driven models can reduce the number of hardware sensors in a process plant by acting as low-cost substitutes for sensors. Since some data-driven have difficulty dealing with nonlinear data, kernel functions been integrated into due to their capability handle this behavior data. However, existing review studies on and regression classification are still limited. Moreover, functions, most research only focused radial basis function group, such gaussian hyperbolic tangent functions. Considering these gaps, study aims summarize up-to-date cumulative application categories, integration models. Different from other studies, discussed characteristics, advantages, disadvantages different Additionally, also summarizes critically reviews tasks, including advantages disadvantages. discovers state art that were used classification. Besides, found mostly task rather than task. In addition, is be applied various applications. Lastly, it recommended emphasize integrating adaptive industrial
Язык: Английский
Процитировано
5Bioresource Technology, Год журнала: 2024, Номер 411, С. 131362 - 131362
Опубликована: Авг. 27, 2024
Язык: Английский
Процитировано
4Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106816 - 106816
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115891 - 115891
Опубликована: Фев. 20, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107352 - 107352
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 72, С. 107513 - 107513
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103126 - 103126
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Frontiers in Medicine, Год журнала: 2025, Номер 12
Опубликована: Апрель 25, 2025
Background Acute respiratory distress syndrome (ARDS) is a clinical triggered by pulmonary or extra-pulmonary factors with high mortality and poor prognosis in the ICU. The aim of this study was to develop an interpretable machine learning predictive model predict risk death patients ARDS Methods datasets used were obtained from two independent databases: Medical Information Mart for Intensive Care (MIMIC) IV eICU Collaborative Research Database (eICU-CRD). This eight algorithms construct models. Recursive feature elimination cross-validation screen features, cross-validation-based Bayesian optimization filter features find optimal combination hyperparameters model. Shapley additive explanations (SHAP) method explain decision-making process Results A total 5,732 severe ADRS included analysis, which 1,171 (20.4%) did not survive. Among models, XGBoost performed best; AUC-ROC 0.887 (95% CI: 0.863–0.909) AUPRC 0.731 0.673–0.783). Conclusion We developed learning-based predicting critically ill ICU, our can effectively identify high-risk at early stage, thereby supporting decision-making, facilitating intervention, improving patient prognosis.
Язык: Английский
Процитировано
0Waste Management, Год журнала: 2024, Номер 188, С. 95 - 106
Опубликована: Авг. 10, 2024
Язык: Английский
Процитировано
3