Renewable Energy, Год журнала: 2024, Номер 237, С. 121623 - 121623
Опубликована: Окт. 16, 2024
Язык: Английский
Renewable Energy, Год журнала: 2024, Номер 237, С. 121623 - 121623
Опубликована: Окт. 16, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2025, Номер 976, С. 179234 - 179234
Опубликована: Апрель 9, 2025
Bark represents 10 % dry weight of spruce trees and is a major side stream from pulp production. Currently, mills burn bark to produce energy with low economic value, directly emitting biogenic carbon dioxide the atmosphere. Biorefining using continuous flow-through fractionation process generates high added-value compounds (tall oil, starch, phenol, pulp) that allow for extended storage durations. This study assesses potential future environmental impacts valorising instead burning it. We conduct LCA combining prospective consequential modelling perspective an input-related functional unit account effects storing in bark-based products. Our findings show biorefining maintains lower than combustion, reducing time-differentiated climate by up 30 %, but only when used pulping recirculated processes are integrated co-located mill supplying surplus waste energy, considered have no associated impacts. Storing longer period time has positive effect on mitigating short-term However, our analysis reveals while time-dependent decrease, there increase human toxicity ecotoxicity impacts, combustion performing better these categories. highlights importance expanding scope studies include beyond change. Overall, this work demonstrates relevant approach emerging biorefineries thus supports development sustainable circular bioeconomy.
Язык: Английский
Процитировано
0ACS Omega, Год журнала: 2025, Номер 10(16), С. 16683 - 16694
Опубликована: Апрель 15, 2025
In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in electrolyte templates of AspenTech software. To validate accuracy model, results obtained from proposed were compared to experimental data for 37 binary mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included our previous research on pure component prediction nonrandom two-liquid (NRTL) model parameters based UNIFAC simulations. This is mean absolute percentage errors (MAPE) conductivity 2.88, 0.355, 12.1, 10.1%, respectively. case density actual trends could not be accurately reflected under high-concentration conditions certain substances. addition, it was confirmed that inaccurate predictions viscosity commercial-scale falling-film evaporator simulation l-valine production led overall transfer coefficient. Therefore, caution required when predicting missing using approach significant may occur. Nevertheless, can provide an initial parameter value are existing databases without any commercial package.
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2025, Номер unknown, С. 123469 - 123469
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136736 - 136736
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2024, Номер 237, С. 121623 - 121623
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
2