Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Язык: Английский
Computers in Industry, Год журнала: 2024, Номер 165, С. 104231 - 104231
Опубликована: Дек. 19, 2024
Язык: Английский
Процитировано
6Journal of Asia-Pacific Entomology, Год журнала: 2025, Номер unknown, С. 102375 - 102375
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0New Zealand Journal of Crop and Horticultural Science, Год журнала: 2025, Номер unknown, С. 1 - 19
Опубликована: Янв. 15, 2025
In order to quickly and accurately detect immature grape clusters in the complex environment of orchard, a new model FCAE-YOLOv8n was proposed with low hardware requirements, high target accuracy fast convergence. The improved based on original YOLOv8n model. Firstly, possessed numerous parameters unsuitable for mobile terminal deployment. Faster Block module used replace Bottleneck C2f, which reduced parameters. Secondly, similarly-colored backgrounds, small-sized grains, mutual occlusion among contributed its poor recognition. CA mechanism embedded improve feature extraction ability. Finally, EIoU loss function instead CIoU accelerate convergence bounding interval. experimentally compared different models using self-build datasets. achieved precision 98.6%, recall rate 97.1% [email protected]:0.95 92.5%. It increases by 1.2%, 2.0%, 3.4% respectively YOLOv8n. average detection speed each image increased. rapid precise recognition orchards, provided technical support subsequent automated bagging.
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0