A Healthcare System Employing Lightweight CNN for Disease Prediction with Artificial Intelligence DOI Open Access
Mukund Pratap Singh, Jagendra Singh, Vinayakumar Ravi

и другие.

The Open Public Health Journal, Год журнала: 2024, Номер 17(1)

Опубликована: Июнь 6, 2024

Introduction/Background This research introduces the EO-optimized Lightweight Automatic Modulation Classification Network (EO-LWAMCNet) model, employing AI and sensor data for forecasting chronic illnesses within Internet of Things framework. A transformative tool in remote healthcare monitoring, it exemplifies AI's potential to revolutionize patient experiences outcomes. study unveils a novel Healthcare System integrating Convolutional Neural (CNN) swift disease prediction through Artificial Intelligence. Leveraging efficiency lightweight CNN, model holds promise revolutionizing early diagnosis enhancing overall care. By merging advanced techniques, this improving Materials Methods The is implemented analyze real-time an (IoT) methodology also involves integration EO-LWAMCNet into cloud-based IoT ecosystem, demonstrating its reshaping monitoring expanding access high-quality care beyond conventional medical settings. Results Utilizing Chronic Liver Disease (CLD) Brain (BD) datasets, algorithm achieved remarkable accuracy rates 94.8% 95%, respectively, showcasing robustness as reliable clinical tool. Discussion These outcomes affirm model's reliability robust tool, particularly crucial diseases benefiting from detection. impact on emphasized suggesting paradigm shift traditional confines. Conclusion Our proposed presents cutting-edge solution with illnesses. revolutionization ecosystem underscores innovative

Язык: Английский

A novel automated CNN arrhythmia classifier with memory-enhanced artificial hummingbird algorithm DOI
Evren Kıymaç, Yasin Kaya

Expert Systems with Applications, Год журнала: 2022, Номер 213, С. 119162 - 119162

Опубликована: Ноя. 2, 2022

Язык: Английский

Процитировано

46

A systematic review of applying grey wolf optimizer, its variants, and its developments in different Internet of Things applications DOI
Mohammad H. Nadimi-Shahraki, Hoda Zamani, Zahra Asghari Varzaneh

и другие.

Internet of Things, Год журнала: 2024, Номер 26, С. 101135 - 101135

Опубликована: Фев. 22, 2024

Язык: Английский

Процитировано

13

Deep learning for multi-grade brain tumor detection and classification: a prospective survey DOI

K. Bhagyalaxmi,

B. Dwarakanath,

P. Vijaya Pal Reddy

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер 83(25), С. 65889 - 65911

Опубликована: Янв. 20, 2024

Язык: Английский

Процитировано

10

Convolutional neural network combined with reinforcement learning-based dual-mode grey wolf optimizer to identify crop diseases and pests DOI

Yangchen Lu,

Xiaobing Yu, Zhenpeng Hu

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101874 - 101874

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

2

A novel proposed CNN–SVM architecture for ECG scalograms classification DOI Open Access
Öznur Özaltın, Özgür Yeniay

Soft Computing, Год журнала: 2022, Номер 27(8), С. 4639 - 4658

Опубликована: Дек. 15, 2022

Язык: Английский

Процитировано

38

A Systematic Review of Machine Learning and IoT Applied to the Prediction and Monitoring of Cardiovascular Diseases DOI Open Access
Alejandra Cuevas-Chávez, Yasmín Hernández, Javier Ortiz-Hernández

и другие.

Healthcare, Год журнала: 2023, Номер 11(16), С. 2240 - 2240

Опубликована: Авг. 9, 2023

According to the Pan American Health Organization, cardiovascular disease is leading cause of death worldwide, claiming an estimated 17.9 million lives each year. This paper presents a systematic review highlight use IoT, IoMT, and machine learning detect, predict, or monitor disease. We had final sample 164 high-impact journal papers, focusing on two categories: detection using IoT/IoMT technologies techniques. For first category, we found 82 proposals, while for second, 85 proposals. The research highlights list technologies, techniques, datasets, most discussed diseases. Neural networks have been popularly used, achieving accuracy over 90%, followed by random forest, XGBoost, k-NN, SVM. Based results, conclude that can predict diseases in real time, ensemble techniques obtained one best performances metric, hypertension arrhythmia were Finally, identified lack public data as main obstacles approaches prediction.

Язык: Английский

Процитировано

22

Swarm intelligence empowered three-stage ensemble deep learning for arm volume measurement in patients with lymphedema DOI

Ali Shokouhifar,

Mohammad Shokouhifar, Maryam Sabbaghian

и другие.

Biomedical Signal Processing and Control, Год журнала: 2023, Номер 85, С. 105027 - 105027

Опубликована: Май 17, 2023

Язык: Английский

Процитировано

18

ECG Arrhythmia Classification Using Convolutional Neural Network DOI Open Access

ERRABIH Abdelhafid,

EDDER Aymane,

Benayad Nsiri

и другие.

International Journal of Emerging Technology and Advanced Engineering, Год журнала: 2022, Номер 12(7), С. 186 - 195

Опубликована: Июль 2, 2022

This study provides a thorough analysis of earlier DL techniques used to classify the ECG data. The large variability among individual patients and high expense labeling clinical records are main hurdles in automatically detecting arrhythmia by electrocardiogram (ECG). classification (ECG) arrhythmias using novel more effective technique is presented this research. A high-performance (ECG)-based arrhythmic beats system described research develop plan with an autonomous feature learning strategy optimization mechanism, based on heartbeat approach. We propose method efficient 12-layer, MIT-BIH Arrhythmia dataset's five micro-classes types wavelet denoising technique. Compared state-of-the-art approaches, newly enables considerable accuracy increase quicker online retraining less professional involvement.

Язык: Английский

Процитировано

24

AI-Driven Real-Time Classification of ECG Signals for Cardiac Monitoring Using i-AlexNet Architecture DOI Creative Commons
Manjur Kolhar,

Raisa Nazir Ahmed Kazi,

Hitesh Mohapatra

и другие.

Diagnostics, Год журнала: 2024, Номер 14(13), С. 1344 - 1344

Опубликована: Июнь 25, 2024

The healthcare industry has evolved with the advent of artificial intelligence (AI), which uses advanced computational methods and algorithms, leading to quicker inspection, forecasting, evaluation treatment. In context healthcare, (AI) sophisticated evaluate, decipher draw conclusions from patient data. AI potential revolutionize in several ways, including better managerial effectiveness, individualized treatment regimens diagnostic improvements. this research, ECG signals are preprocessed for noise elimination heartbeat segmentation. Multi-feature extraction is employed extract features data, an optimization technique used choose most feasible features. i-AlexNet classifier, improved version AlexNet model, classify between normal anomalous signals. For experimental evaluation, proposed approach applied PTB MIT_BIH databases, it observed that suggested method achieves a higher accuracy 98.8% compared other works literature.

Язык: Английский

Процитировано

6

Metaheuristic Algorithms for 6G wireless communications: Recent advances and applications DOI
Ammar Kamal Abasi, Moayad Aloqaily, Mohsen Guizani

и другие.

Ad Hoc Networks, Год журнала: 2024, Номер 158, С. 103474 - 103474

Опубликована: Март 15, 2024

Язык: Английский

Процитировано

5