
iScience, Год журнала: 2024, Номер 27(12), С. 111230 - 111230
Опубликована: Окт. 23, 2024
Язык: Английский
iScience, Год журнала: 2024, Номер 27(12), С. 111230 - 111230
Опубликована: Окт. 23, 2024
Язык: Английский
EURASIP Journal on Advances in Signal Processing, Год журнала: 2024, Номер 2024(1)
Опубликована: Апрель 15, 2024
Abstract It is desired to apply deep learning models (DLMs) assist physicians in distinguishing abnormal/normal lung sounds as quickly possible. The performance of DLMs depends on feature-related and model-related parameters heavily. In this paper, the relationship between a DLM, i.e., convolutional neural network (CNN) analyzed through experiments. ICBHI 2017 selected dataset. sensitivity analysis classification DLM three parameters, length frame, overlap percentage (OP) successive frames feature type, performed. An augmented balanced dataset acquired by way white noise addition, time stretching pitch shifting. spectrogram mel frequency cepstrum coefficients are used features CNN, respectively. results training test show that there exists significant difference among various parameter combinations. OP sensitive. higher OP, better performance. concluded for fixed sampling 8 kHz, frame size 128, 75% optimum under which relatively no extra computation or storage resources required.
Язык: Английский
Процитировано
0Опубликована: Янв. 12, 2024
Lung disease, ranking third globally for causes of death with over 3 million annual fatalities according to the 2015 World Health Organization (WHO), underscores significance lung sound features in respiratory illness diagnosis. Auscultation, a subjective early detection method, led development Computer-Aided Diagnosis (CAD) system employing VGG16 model medical imaging complexity. Data limitations necessitated augmentation, enhancing VGG16's performance compared non-augment results. Respiratory Disease Detection (RDD) task was introduced. Short-Time Fourier Transform (STFT) facilitated audio feature extraction, while VGG16, using transfer learning and fine-tuning, proved effective on Kaggle-sourced dataset. Augmentation techniques, including pitch shifting, time stretching, horizontal flipping, addressed class imbalance. The study introduces innovative data augmentation techniques overcome challenge limited training data, demonstrating effectiveness model's performance.
Язык: Английский
Процитировано
02022 34th Chinese Control and Decision Conference (CCDC), Год журнала: 2024, Номер unknown, С. 2473 - 2478
Опубликована: Май 25, 2024
Язык: Английский
Процитировано
0Lecture notes in electrical engineering, Год журнала: 2024, Номер unknown, С. 287 - 292
Опубликована: Окт. 19, 2024
Язык: Английский
Процитировано
0iScience, Год журнала: 2024, Номер 27(12), С. 111230 - 111230
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
0