Information Sciences, Год журнала: 2024, Номер unknown, С. 121773 - 121773
Опубликована: Дек. 1, 2024
Язык: Английский
Information Sciences, Год журнала: 2024, Номер unknown, С. 121773 - 121773
Опубликована: Дек. 1, 2024
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 30, 2025
Breast cancer diagnosis remains a crucial challenge in medical research, necessitating accurate and automated detection methods. This study introduces an advanced deep learning framework for histopathological image classification, integrating AlexNet Gated Recurrent Unit (GRU) networks, optimized using the Hippopotamus Optimization Algorithm (HOA). Initially, DenseNet-41 extracts intricate spatial features from images. These are then processed by hybrid AlexNet-GRU model, leveraging AlexNet's robust feature extraction GRU's sequential capabilities. HOA is employed to fine-tune hyperparameters, ensuring optimal model performance. The proposed approach evaluated on benchmark datasets (BreakHis BACH), achieving classification accuracy of 99.60%, surpassing existing state-of-the-art models. results demonstrate efficacy with bio-inspired optimization techniques breast detection. research offers computationally efficient improving early clinical decision-making, potentially enhancing patient outcomes.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Al-Iraqia Journal of Scientific Engineering Research, Год журнала: 2024, Номер 3(1)
Опубликована: Март 1, 2024
Breast cancer incidence has been soaring sharply, and this is causing grave concern worldwide due to its high mortality rates. It should be correctly diagnosed in the early stages order achieve better patient outcomes. Over last decade, there a great demand for diagnosis systems based on AI that could used breast detection classification. These computerized devices utilize deep learning algorithms analyze medical scans thereby allowing subtle abnormality recognition distinguishing malignant from benign tumors. Computer-aided named CAD can assist radiologists pathologists more precise with their diagnoses while at same time increasing productivity. Furthermore, recent advances CNN architectures coupled attention mechanisms have further improved diagnosis. Attention-based models focus crucial regions hence enhancing classification accuracy reliability. In study, we introduce new approach improves of using GoogLeNet architecture modified by an mechanism image regions. The spatial transformer network (STN), which allows it significant areas histopathology images selective attention. Through mechanism, model becomes discriminatory features indicate different subtypes cancer. evaluate effectiveness method, implemented experiments BreaKHis dataset classifying carcinomas. This intentionally collected under various magnifications so as facilitate binary multiple tasks. outcomes clearly show outperforms original terms accuracy. For classification, proposed demonstrated rate 98.08%, whereas GoogLeNet's was 94.99%. multi-class 100x magnification, achieved 94.63% 85.06%. evident these findings efficiency significantly approach. study incorporating framework improve performance. Combining together lead accurate treatment decisions results. More efforts are needed develop area ongoing endeavors towards upgrading them ultimately contribute saving many lives fight against
Язык: Английский
Процитировано
2Applied Intelligence, Год журнала: 2024, Номер 54(6), С. 4834 - 4847
Опубликована: Март 1, 2024
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Май 2, 2024
Язык: Английский
Процитировано
1Опубликована: Июнь 11, 2024
Язык: Английский
Процитировано
1Computational Biology and Chemistry, Год журнала: 2024, Номер 114, С. 108277 - 108277
Опубликована: Ноя. 10, 2024
Язык: Английский
Процитировано
1Neural Computing and Applications, Год журнала: 2024, Номер unknown
Опубликована: Дек. 24, 2024
Язык: Английский
Процитировано
1Asian Journal of Applied Science and Technology, Год журнала: 2023, Номер 07(04), С. 27 - 34
Опубликована: Янв. 1, 2023
This study offers a novel method for forecasting the response to chemotherapy in non-hormone receptor breast cancer, difficult and complicated condition. TensorFlow-powered Spatial Temporal Integration (CNN-RNN) Architecture is used methods integrate clinical data histological images. Heuristic-driven deep learning techniques use domain-specific knowledge build models choose features. Using knowledge, Hybrid Differential Evolution Particle Swarm Optimization (DE-PSO) optimizes model's parameters. Because Lime comprehensible justifications predictions, its adoption guarantees transparency interpretability. Furthermore, federated distributed training approach preserve scalability safeguard patient privacy. precision empathy better treatment decisions cancer by fusing AI with expertise.
Язык: Английский
Процитировано
1Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(39), С. 51267 - 51299
Опубликована: Авг. 6, 2024
Язык: Английский
Процитировано
0