2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Год журнала: 2024, Номер unknown, С. 2122 - 2127
Опубликована: Дек. 3, 2024
Язык: Английский
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Год журнала: 2024, Номер unknown, С. 2122 - 2127
Опубликована: Дек. 3, 2024
Язык: Английский
Biomedical Signal Processing and Control, Год журнала: 2024, Номер 93, С. 106175 - 106175
Опубликована: Март 11, 2024
Язык: Английский
Процитировано
8Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Март 11, 2025
Язык: Английский
Процитировано
0Computers in Biology and Medicine, Год журнала: 2025, Номер 189, С. 109889 - 109889
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
0Bioengineering, Год журнала: 2025, Номер 12(3), С. 282 - 282
Опубликована: Март 12, 2025
The rising prevalence of skin lesions places a heavy burden on global health resources and necessitates an early precise diagnosis for successful treatment. diagnostic potential recent multi-modal lesion detection algorithms is limited because they ignore dynamic interactions information sharing across modalities at various feature scales. To address this, we propose deep learning framework, Multi-Modal Skin-Imaging-based Information-Switching Network (MDSIS-Net), end-to-end recognition. MDSIS-Net extracts intra-modality features using transfer in multi-scale fully shared convolutional neural network introduces innovative information-switching module. A cross-attention mechanism dynamically calibrates integrates to improve inter-modality associations representation this tested clinical disfiguring dermatosis data the public Derm7pt melanoma dataset. Visually Intelligent System Image Analysis (VISIA) captures five modalities: spots, red marks, ultraviolet (UV) porphyrins, brown spots dermatosis. model performs better than existing approaches with mAP 0.967, accuracy 0.960, precision 0.935, recall f1-score 0.947. Using dermoscopic pictures from dataset, outperforms current benchmarks melanoma, 0.877, 0.907, 0.911, 0.815, 0.851. model’s interpretability proven by Grad-CAM heatmaps correlating focus areas. In conclusion, our enhances identification capturing relationship fine-grained details images, improving both interpretability. This work advances decision making lays foundation future developments
Язык: Английский
Процитировано
0Information Fusion, Год журнала: 2025, Номер 121, С. 103146 - 103146
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Royal Society Open Science, Год журнала: 2024, Номер 11(4)
Опубликована: Апрель 1, 2024
With the rapid development of medical imaging methods, multimodal image fusion techniques have caught interest researchers. The aim is to preserve information from diverse sensors using various models generate a single informative image. main challenge derive trade-off between spatial and spectral qualities resulting fused computing efficiency. This article proposes fast reliable method for depending on multilevel Guided edge-preserving filtering (MLGEPF) decomposition rule. First, each was divided into three sublayer categories an MLGEPF scheme: small-scale component, large-scale component background component. Secondly, two strategies—pulse-coupled neural network based structure tensor maximum based—are applied combine types layers, layers' properties. different sublayers are combined create at end. A total 40 pairs brain images four separate conditions were tested in experiments. pair includes case studies including magnetic resonance (MRI) , TITc, single-photon emission computed tomography (SPECT) positron (PET). We included qualitative analysis demonstrate that visual contrast surrounding tissue increased our proposed method. To further enhance comparison, we asked group observers compare method’s outputs with other methods score them. Overall, scheme received positive subjective review. Moreover, objective assessment indicators category also included. Our achieves high evaluation outcome feature mutual (FMI), sum correlation differences (SCD), Qabf Qy indexes. implies algorithm has better performance preservation efficient structural transferring.
Язык: Английский
Процитировано
2Signal Image and Video Processing, Год журнала: 2024, Номер 18(5), С. 4375 - 4383
Опубликована: Март 22, 2024
Язык: Английский
Процитировано
1Computer Vision and Image Understanding, Год журнала: 2024, Номер 244, С. 104011 - 104011
Опубликована: Апрель 10, 2024
Язык: Английский
Процитировано
1Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 106976 - 106976
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
1Optics & Laser Technology, Год журнала: 2024, Номер 181, С. 112018 - 112018
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1