Enhancing medical image classification via federated learning and pre-trained model
Egyptian Informatics Journal,
Год журнала:
2024,
Номер
27, С. 100530 - 100530
Опубликована: Авг. 28, 2024
Язык: Английский
MRI intracranial Neoplasm classification using hybrid LOA-based deep learning classifier
Jérémie Mary,
M. Suganthi
Biomedical Signal Processing and Control,
Год журнала:
2025,
Номер
104, С. 107560 - 107560
Опубликована: Янв. 28, 2025
Язык: Английский
Computer-aided diagnosis for multi-class classification of brain tumors using CNN features via transfer-learning
Multimedia Tools and Applications,
Год журнала:
2025,
Номер
unknown
Опубликована: Март 15, 2025
Язык: Английский
Machine learning fusion for glioma tumor detection
Scientific Reports,
Год журнала:
2025,
Номер
15(1)
Опубликована: Апрель 2, 2025
The
early
detection
of
brain
tumors
is
very
important
for
treating
them
and
improving
the
quality
life
patients.
Through
advanced
imaging
techniques,
doctors
can
now
make
more
informed
decisions.
This
paper
introduces
a
framework
tumor
system
capable
grading
gliomas.
system's
implementation
begins
with
acquisition
analysis
magnetic
resonance
images.
Key
features
indicative
gliomas
are
extracted
classified
as
independent
components.
A
deep
learning
model
then
employed
to
categorize
these
proposed
classifies
into
three
primary
categories:
meningioma,
pituitary,
glioma.
Performance
evaluation
demonstrates
high
level
accuracy
(99.21%),
specificity
(98.3%),
sensitivity
(97.83%).
Further
research
validation
essential
refine
ensure
its
clinical
applicability.
development
accurate
efficient
systems
holds
significant
promise
enhancing
patient
care
survival
rates.
Язык: Английский
Efficient and accurate brain tumor detection and classification using advanced hybrid filtering and self-attention generative adversarial networks
R. Rajakumari,
A. Selvapandian
Neural Computing and Applications,
Год журнала:
2025,
Номер
unknown
Опубликована: Май 7, 2025
Язык: Английский
X-Brain: Explainable recognition of brain tumors using robust deep attention CNN
Biomedical Signal Processing and Control,
Год журнала:
2024,
Номер
100, С. 106988 - 106988
Опубликована: Окт. 16, 2024
Язык: Английский
Optimized attention-based lightweight CNN using particle swarm optimization for brain tumor classification
Biomedical Signal Processing and Control,
Год журнала:
2024,
Номер
100, С. 107126 - 107126
Опубликована: Ноя. 14, 2024
Язык: Английский
A Dual-Branch Lightweight Model for Extracting Characteristics to Classify Brain Tumors
G. Sangeetha,
G. Vadivu,
Sundara Raja Perumal R.
и другие.
Journal of Advances in Information Technology,
Год журнала:
2024,
Номер
15(9), С. 1035 - 1046
Опубликована: Янв. 1, 2024
Язык: Английский
A method for measuring hairline length and discriminating hairline recession grades based on the BiSeNet model
Measurement Science and Technology,
Год журнала:
2024,
Номер
36(1), С. 015705 - 015705
Опубликована: Окт. 18, 2024
Abstract
Hair
plays
an
important
role
in
a
person’s
appearance.
According
to
survey
by
the
World
Health
Organization,
approximately
70%
of
adults
have
scalp
and
hair
problems.
Doctors
currently
make
hairline
recession
diagnoses
based
on
loss
criteria,
but
this
approach
is
subjective.
This
paper
proposes
novel
method
for
objectively
assessing
grades.
First,
Bilateral
Segmentation
Network
model
utilized
obtain
facial
segmentation
image.
Second,
utilizes
connected
components
improve
results.
Next,
labeling
key
points
used
extract
part
features
eyebrow
region
calculate
related
values.
Finally,
judgment
length
grade
realized
combining
these
with
camera
calibration.
In
paper,
front-face
images
50
volunteers
were
collected
determination.
The
results
expert
doctors
compared
method.
showed
1.3
cm
difference
average
about
80%
similarity
judgments.
conclusion,
using
machine
vision
methods
measure
height
provides
objective
repeatable
Язык: Английский
Optimizing Automated Hematoma Expansion Classification from Baseline and Follow-Up Head Computed Tomography
Applied Sciences,
Год журнала:
2024,
Номер
15(1), С. 111 - 111
Опубликована: Дек. 27, 2024
Hematoma
expansion
(HE)
is
an
independent
predictor
of
poor
outcomes
and
a
modifiable
treatment
target
in
intracerebral
hemorrhage
(ICH).
Evaluating
HE
large
datasets
requires
segmentation
hematomas
on
admission
follow-up
CT
scans,
process
that
time-consuming
labor-intensive
large-scale
studies.
Automated
can
expedite
this
process;
however,
cumulative
errors
from
scans
hamper
accurate
classification.
In
study,
we
combined
tandem
deep-learning
classification
model
with
automated
to
generate
probability
measures
for
false
classifications.
With
strategy,
limit
expert
review
hematoma
segmentations
subset
the
dataset,
tailored
research
team's
preferred
sensitivity
or
specificity
thresholds
their
tolerance
false-positive
versus
false-negative
results.
We
utilized
three
separate
multicentric
cohorts
cross-validation/training,
internal
testing,
external
validation
(n
=
2261)
develop
test
pipeline
ground
truth
binary
annotations
(≥3,
≥6,
≥9,
≥12.5
mL).
Applying
95%
threshold
showed
practical
efficient
strategy
annotation
ICH
datasets.
This
excluded
47-88%
test-negative
predictions
different
definitions,
less
than
2%
misclassification
both
cohorts.
Our
offers
time-efficient
optimizable
method
generating
classifications
datasets,
reducing
burden
while
minimizing
rate.
Язык: Английский