Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502
Опубликована: Окт. 21, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502
Опубликована: Окт. 21, 2024
Язык: Английский
Computer Methods in Biomechanics & Biomedical Engineering, Год журнала: 2025, Номер unknown, С. 1 - 15
Опубликована: Янв. 6, 2025
Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with lightweight temporal attention mechanism EEG-Based MI decoding. Specifically, first extracts representations raw signals, followed by independent branches to capture spatial, spectral, temporal-spatial, temporal-spectral features. Each branch includes domain-specific convolutional layer, variance layer. Finally, the derived each are concatenated weights classified through fully connected Experiments demonstrate outperforms state-of-the-art models, achieving accuracies of 84.60% on BCI Competition IV 2a, 87.80% 2b, 74.58% OpenBMI, showcasing its potential robust applications.
Язык: Английский
Процитировано
0International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown
Опубликована: Фев. 4, 2025
Язык: Английский
Процитировано
0Frontiers in Neuroscience, Год журнала: 2025, Номер 19
Опубликована: Фев. 5, 2025
A brain-computer interface (BCI) is an emerging technology that aims to establish a direct communication pathway between the human brain and external devices. Motor imagery electroencephalography (MI-EEG) signals are analyzed infer users' intentions during motor imagery. These hold potential for applications in rehabilitation training device control. However, classification accuracy of MI-EEG remains key challenge development BCI technology. This paper proposes composite improved attention convolutional network (CIACNet) classification. CIACNet utilizes dual-branch neural (CNN) extract rich temporal features, block module (CBAM) enhance feature extraction, (TCN) capture advanced multi-level concatenation more comprehensive representation. The model performs well on both IV-2a IV-2b datasets, achieving accuracies 85.15 90.05%, respectively, with kappa score 0.80 datasets. results indicate model's performance exceeds four other comparative models. Experimental demonstrate proposed has strong capabilities low time cost. Removing one or blocks decline overall model, indicating each within makes significant contribution its effectiveness. ability reduce costs improve (MI-BCI) systems, while also highlighting practical applicability.
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 145, С. 110280 - 110280
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 106, С. 107756 - 107756
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127312 - 127312
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер 262, С. 125585 - 125585
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
2Applied Soft Computing, Год журнала: 2024, Номер 165, С. 112087 - 112087
Опубликована: Авг. 9, 2024
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
0